Nicolas Guelfi
Didier Buchs (Eds.)

Rapid Integration
of Software Engineering
Techniques

Third International Workshop, RISE 2006
Geneva, Switzerland, September 2006
Revised Selected Papers

LNCS 4401

@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

4401

Nicolas Guelfi Didier Buchs (Eds.)

Rapid Integration
of Software Engineering
Techniques

Third International Workshop, RISE 2006
Geneva, Switzerland, September 13-15, 2006
Revised Selected Papers

@ Springer

Volume Editors

Nicolas Guelfi

University of Luxembourg

6, rue Richard Coudenhove-Kalergi
1359 Luxembourg, Luxembourg
E-mail: nicolas.guelfi @uni.lu

Didier Buchs

University of Geneva

Computer Science Department

24, rue du Général-Dufour

1211 Geneva 4, Switzerland
E-mail: didier.buchs @cui.unige.ch

Library of Congress Control Number: 2007923956

CR Subject Classification (1998): D.2, .3, K.6.1, K.6.3
LNCS Sublibrary: SL 2 — Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-71875-3 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-71875-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12045778 06/3180 543210

Preface

RISE 2006 constituted an international forum for researchers and practitioners
interested in the advancement and rapid application of novel, integrated, or prac-
tical software engineering approaches, being part of a methodological framework,
that apply to the development of either new or evolving applications and sys-
tems. It provided a good opportunity to present and discuss the latest research
results and ideas in the rapid and effective integration of software engineering
techniques. The ERCIM (European Research Consortium for Informatics and
Mathematics) RISE working group selected application areas such as the Web,
mobility, high availability, and embedded and user-interface software in specific
industry sectors comprising finance, telecommunications, transportation (avion-
ics, automotive) and eGovernment. The research issues covered stemmed from
the following software engineering domains:

— software and system architectures

— software reuse

— software testing

— software model checking

— model driven design and testing techniques
— model transformation

— requirements engineering

— lightweight or practice-oriented formal methods
— software processes and software metrics

— automated software engineering

— software patterns

— design by contract

— defensive programming

— software entropy and software re-factoring
— extreme programming

— agile software development

— programming languages

— software dependability and trustworthiness

All papers submitted to this workshop were reviewed by at least two mem-
bers of the International Program Committee. Acceptance was based primarily
on originality and contribution. We have selected, for these proceedings, 10 pa-
pers amongst 30 submitted and an invited paper. The organization of such a
workshop requires a lot of work. We would like to acknowledge the efforts of the
Program Committee members, the additional referees, the organization com-
mittee members, the scientific and technical staff of the University of Geneva,
including the Centre Universitaire d’Informatique, and of the University of Lux-
embourg, Faculty of Science, Technology and Communication department.

VI Preface

RISE 2006 was supported by ERCIM, European Research Consortium for
Informatics and Mathematics, the “Ministere de ’enseignement supérieur et de
la recherche” and by the “Fond National pour la Recherche au Luxembourg”.

September 2006 Nicolas Guelfi and Didier Buchs

Organization

RISE 2006 was organized by the University of Geneva, Software Modeling and

Verification Group.

Program Chairs

Guelfi, Nicolas
Buchs, Didier

University of Luxembourg, Luxembourg
University of Geneva, Switzerland

International Program Committee

Arve Aagesen, Finn
Avgeriou, Paris
Bertolino, Antonia
Bicarregui, Juan
Bolognesi, Tommaso
Born, Marc

Buchs, Didier
Carrez, Cyril

Dony, Christophe
Dubois, Eric
Guelfi, Nicolas
Haajanen, Jyrki
Issarny, Valérie
Klint, Paul
Moeller, Eckhard
Mistrik, Ivan
Monostori, Laszlo
Nawrocki, Jerzy
Pimentel, Ernesto
Romanovsky, Alexander
Reggio Gianna, ISI
Savidis, Anthony
Schieferdecker, Ina

Organizing Committee

Buchs, Didier
Pedro, Luis
Bertossa, Catia
Gusthiot, Germaine

NTNU, Norway

University of Groningen, The Netherlands
CNR-ISTI, Italy

CCLRC, uk

CNR-ISTI, Italy

Fraunhofer FOKUS, Germany

SARIT, University of Geneva, Switzerland
NTNU, Norway

LIRMM, University of Montpellier, France
CRP Henri-Tudor, Luxembourg

FNR, University of Luxembourg, Luxembourg
VTT, Finland

INRIA, France

CWI, The Netherlands

Fraunhofer FOKUS, Germany

Fraunhofer IPSI IM, Germany

SZTAKI, Hungary

Poznan University of Technology, Poland
SpaRCIM, University of Malaga, Spain
DCS, University of Newcastle, UK

Genoa, Italy

FORTH, Greece

Fraunhofer FOKUS, Germany

University of Geneva
University of Geneva
University of Geneva
University of Geneva

VIII Organization

Sponsoring Institutions

@ I_I fonds _national de la

This workshop was supported by the ERCIM, the “Ministere de I’enseignement
supérieur et de la recherche” and by the “Fond National pour la Recherche au
Luxembourg”.

o
£
H
g
2

T
g
g
g
L

Table of Contents

Graphical Composition of Grid Services...........
Kenneth J. Turner and Koon Leai Larry Tan

A UML 2.0 Profile for Architecting B3G Applications
Mauro Caporuscio and Valerie Issarny

RTDWD: Real-Time Distributed Wideband-Delphi for User Stories
Estimation
Giovanni Aiello, Marco Alessi, Massimo Cossentino,
Alfonso Urso, and Giuseppe Vella

Trust Strategies and Policies in Complex Socio-technical Safety-Critical
Domains: An Analysis of the Air Traffic Management Domain
Massimo Felici

Development of Extensible and Flexible Collaborative Applications
Using a Web Service-Based Architecture
Mario Anzures-Garcia, Miguel J. Hornos, and
Patricia Paderewski-Rodriguez

Build, Configuration, Integration and Testing Tools for Large Software
Projects: ETICS .. .o e
Marc-Elian Bégin, Guillermo Diez-Andino Sancho,
Alberto Di Meglio, Enrico Ferro, Elisabetta Ronchieri,
Matteo Selmi, and Marian Zurek

Architectural Verification of Black-Box Component-Based Systems
Antonia Bertolino, Henry Muccini, and Andrea Polini

Systematic Generation of XML Instances to Test Complex Software
Applications.
Antonia Bertolino, Jinghua Gao, Eda Marchetti, and Andrea Polini

Transformations of UML 2 Models Using Concrete Syntax Patterns
Markus Schmidt

Towards a Formal, Model-Based Framework for Control Systems
Interaction Prototyping
Matteo Risoldi and Vasco Amaral

Invited Paper

SketchiXML: A Design Tool for Informal User Interface Rapid
Prototyping
Adrien Coyette, Jean Vanderdonckt, and Quentin Limbourg

Author Index

18

35

51

66

81

98

Graphical Composition of Grid Services

Kenneth J. Turner and Koon Leai Larry Tan

Computing Science and Mathematics, University of Stirling, Scotland FK9 4LA
kjt@cs.stir.ac.uk, klt@cs.stir.ac.uk

Abstract. Grid services and web services have similarities but also significant
differences. Although conceived for web services, it is seen how BPEL (Business
Process Execution Logic) can be used to orchestrate a collection of grid services.
It is explained how CRESS (Chisel Representation Employing Systematic Spec-
ification) has been extended to describe grid service composition. The CRESS
descriptions are automatically converted into BPEL/WSDL code for practical re-
alisation of the composed services. This achieves orchestration of grid services
deployed using the widely used Globus Toolkit and ActiveBPEL interpreter. The
same CRESS descriptions are automatically translated into LOTOS, allowing sys-
tematic checks for interoperability and logical errors prior to implementation.

1 Introduction

1.1 Motivation

This paper presents a unique blend of ideas from different technical areas: distributed
computing, software engineering, service-oriented architecture, and formal methods.
Grid computing has emerged as a leading form of distributed computing. However, grid
computing has largely focused on the development of isolated applications. Service-
oriented architecture provides a framework for combining grid services into new ones.

The emphasis of this paper is on integrating software engineering techniques (visual
programming, formal methods) into an evolving application area of considerable impor-
tance (grid computing). The aim has been to achieve immediate and practical benefits
from advanced software techniques. Grid computing is a comparatively new field that
has so far focused mainly on pragmatic, programmatic aspects. The work presented
here offers a number of advantages:

— As with component-based approaches, grid services are combined into new com-
posite services using BPEL as an emerging standard for web services.

— Grid service composition is described graphically, making it comprehensible to
less technical users. Compared to the automatically generated code, the approach
is compact and much more attractive than writing the raw XML that underlies it.

— A sound technique has been defined, benefiting from formal methods behind the
scenes yet supporting automated implementation.

The approach is therefore application-driven (orchestrating grid services), novel (com-
bining practice and theory), practical (automated implementation and validation), and
integrated (complementing existing grid practice).

N. Guelfi and D. Buchs (Eds.): RISE 2006, LNCS 4401, pp. 1 2007.
(© Springer-Verlag Berlin Heidelberg 2007

2 K.J. Turner and K.L.L. Tan

1.2 Background to Grid Computing

Grid computing is named by analogy with the electrical power grid. Just as power sta-
tions are linked into a universal electrical supply, so computational resources can be
linked into a computing grid. Distributed computing is hardly a new area. But the archi-
tecture and software technologies behind the grid have captured the attention of those
who perform large-scale computing, e.g. in the sciences. Grid computing offers a num-
ber of distinctive advantages that include:

— support for virtual organisations that transcend conventional boundaries, and may
come together only for a particular task

— portals that provide ready access to grid-enabled resources

— single sign-on, whereby an authenticated user can make use of distributed resources
such as data repositories or computational servers

— security, including flexible mechanisms for delegating credentials to third parties to
act on behalf of the user

— distributed and parallel computing.

Grid computing is governed by OGSA (Open Grid Services Architecture [8]). Open
standards for the grid are being created by the GGF (Global Grid Forum). Grid applica-
tions often make themselves available via services that are comparable to web services —
another area of vigorous development. For a time, grid services and web services did
not share compatible standards. The major issue was the need for stateful services that
have persistent state. A grid-specific solution to this was developed. However, this was
clearly something that web services could also benefit from.

A harmonised solution was defined in the form of WSRF (Web Services Resource
Framework [10]). This is a collection of interrelated standards such as WS-Resource
and WS-ResourceProperties. WSRF is implemented by various toolsets for grid com-
puting such as GT4 (Globus Toolkit version 4, www.globus.org).

1.3 Background to Service Orchestration

This paper emphasises the composition of grid services, not the description of isolated
grid services. Composing services has attracted considerable industrial interest. This is
achieved by defining a business process that captures the logic of how the individual
services are combined. The term orchestration is also used for this. A nice feature of
the approach is that a composed service acts as a service in its own right.

Competing solutions were originally developed for orchestrating web services. A
major advance was the multi-company specification for BPEL4WS (Business Process
Execution Language for Web Services [1]), which is being standardised as WS-BPEL
(Web Services Business Process Execution Language [2]). BPEL is now relatively well
established as the way of composing web services. However, its use for composing grid
services has received only limited attention. The work reported in this paper has used
ActiveBPEL (an open-source BPEL interpreter, www.activebpel.org).

1.4 Background to CRESS

CRESS (Communication Representation Employing Structured Specification) was
developed as a general-purpose graphical notation for services. Essentially, CRESS

Graphical Composition of Grid Services 3

describes the flow of actions in a service. It thus lends itself to describing flows that
combine grid services.

CRESS has been used to specify and analyse voice services from the Intelligent Net-
work, Internet Telephony, and Interactive Voice Response. It has also been used to or-
chestrate web services [19]. In the new work reported here, CRESS has been extended
to the composition of grid services. The present paper discusses how the same approach
can be used for practical but formally-assisted development of grid services. Formally-
based investigation of composite grid services will be reported in a future paper.

The work reported in this paper has been undertaken in the context of the GEODE
project (Grid Enabled Occupational Data Environment, www.geode.stir.ac.uk). This
project is researching the use of grid computing in social science, specifically grid ser-
vices for occupational data analysis. The authors have investigated how services from
this domain can be composed, formalised and rigorously analysed.

Service descriptions in CRESS are graphical and accessible to non-specialists. A ma-
jor gain is that descriptions are automatically translated into implementation languages
for deployment, and also into formal languages for analysis. CRESS offers benefits of
comprehensibility, portability, automated implementation and rigorous analysis.

CRESS is extensible, with plug-in modules for application domains and target lan-
guages. Although web service support had already been developed for CRESS, it has
been necessary to extend this significantly for use with grid services. In addition, grid
services have specialised characteristics that require corresponding support in CRESS.

CRESS is intended as part of a formally-based method for developing services. In the
context of grid computing, the steps are as follows:

The desired composition of grid services is first described using CRESS. This gives
a high-level overview of the service interrelationships. Because the description is
graphical, it is relatively accessible even to non-specialists.

— The CRESS descriptions are then automatically translated into a formal language.
CRESS supports standardised formal languages such as LOTOS (Language Of Tem-
poral Ordering Specification [11]) and SDL (Specification and Description Lan-
guage [12]), though this paper uses only LOTOS. Obtaining a formal specification
of a composite service is useful in its own right: it gives precise meaning to the
services and their combination.

— Although CRESS creates an outline formal specification for each of the partner
services being combined, it defines just their basic functionality. This is sufficient
to check basic properties such as interoperability. However for a fuller check of
composite functionality, a more realistic specification is required of each partner.
This allows a rigorous analysis to be performed prior to implementation.

— A competent designer can be expected to produce a satisfactory service imple-

mentation. However, combining services often leads to unexpected problems. The

services may not have been designed to work together, and may not interoperate
properly. The issues may range from the coarse (e.g. a disagreement over the inter-
face) to the subtle (e.g. interference due to resource competition). This is akin to the
feature interaction problem in telephony, whereby independently designed features
may conflict with each other. CRESS supports the rigorous evaluation of composite
services. Problems may need to be corrected in either the CRESS descriptions or in

4 K.J. Turner and K.L.L. Tan

the partner specifications. Several iterations may be required before the designer is
satisfied that the composite grid service meets its requirements.

— The CRESS descriptions are then automatically translated into an implementation
language. The interface to each service is defined by the generated WSDL (Web
Services Description Language [22]). The orchestration of the services is defined
by the generated BPEL. The partner implementations must be created indepen-
dently, hopefully using the formal specifications already written. However, CRESS
can generate outline code that is then completed by the implementer. This avoids
simple causes of errors such as failing to respect the service interface.

1.5 Relationship to Other Work

As noted already, orchestration of web services has been well received in industry. Scien-
tific workflow modelling has been studied by a number of projects. The MyGrid project
has given an overview of these (http://phoebus.cs.man.ac.uk/twiki/bin/view/Mygrid).
Only some of the better known workflow languages are mentioned below.

JOpera [16] was conceived mainly for orchestrating web services, though its appli-
cability for grid services has also been investigated. JOpera claims greater flexibility
and convenience than BPEL. Taverna [15] was also developed for web services, partic-
ularly for coordinating workflows in bioinformatics research. The underlying language
ScurFL (Simple Conceptual Unified Flow Language) is intended to be multi-purpose,
including applications in grid computing.

CRESS is designed for modelling composite services, but was not conceived as a
workflow language. CRESS serves this role only when orchestrating grid or web ser-
vices; its use in other domains is rather different. An important point is that CRESS
focuses on generating code in standard languages. For service orchestration, this means
BPEL/WSDL. This allows CRESS to exploit industrially relevant developments.

Several researchers have used BPEL to compose grid services. [5] describes a graph-
ical plug-in for Eclipse that allows BPEL service compositions to be generated auto-
matically. This work is notable for dealing with large-scale scientific applications. [3]
discusses programmatic ways in which BPEL can support grid computing. [18] exam-
ines how extensibility mechanisms in BPEL can be used to orchestrate grid services.
However, the focus of such work is pragmatic. For example, grid services may be given
a web service wrapping for compatibility. (Semi-)automated methods of composing
grid services have been investigated, e.g. work on adapting ideas from the semantic
web [14].

An important advantage of CRESS is that practical development is combined with
a formal underpinning. Specifically, the same CRESS descriptions are used to derive
implementations as well as formal specifications. The formalisation permits rigorous
analysis through verification and validation. A number of approaches have been devel-
oped by others for formalising web services. However, the authors are unaware of any
published work on formal methods for composing grid services.

As an example of finite state methods for web services, LTSA-WS (Labelled Tran-
sition System Analyzer for Web Services [7]) allows composed web services to be
described in a BPEL-like manner. Service compositions and workflow descriptions are

Graphical Composition of Grid Services 5

automatically checked for safety and liveness properties. WSAT (Web Service Analy-
sis Tool [9]) models the interactions of composite web services in terms of the global
sequences of message they exchange. For verification, these models are translated into
Promela and verified with SPIN. The ORC (Orchestration) language has also been used
to model the orchestration of web services. [17] discusses its translation into coloured
Petri nets. Both this and the alternative translation into Promela support formal analysis
of composed web services. CRESS, however, is a multi-purpose approach that works
with many kinds of services and with many target languages.

As an example of process algebraic methods for web services, automated translation
between BPEL and LOTOS has been developed [4,6]. This has been used to specify,
analyse and implement a stock management system and a negotiation service. CRESS
differs from this work in using more abstract descriptions that are translated info BPEL
and LOTOS; there is no interconversion among these representations. CRESS descrip-
tions are language-independent, and can thus be used to create specifications in other
formal languages (e.g. SDL). CRESS also offers a graphical notation that is more com-
prehensible to the non-specialist. This is important since service development often
involves non-computer scientists as well as technical experts.

The CRESS notation has been previously been described in other papers. More re-
cently, [19] has shown how web services can be modelled by CRESS. Since grid services
are similar, but certainly not the same, this paper focuses on the advances that have been
necessary to model and analyse the composition of grid services.

2 Describing Composite Grid Services with CRESS

CRESS is a general-purpose notation for describing services. Figure 1 shows the subset
of constructs needed in this paper for grid services; CRESS supports more than this.

2.1 CRESS Notation for Grid Services

External services are considered to be partners. They offer their services at ports where
operations may be performed. Invoking a service may give rise to a fault.

A CRESS diagram shows the flow among activities, drawn as ellipses. Look ahead
to figures 2 and 3 for examples of CRESS diagrams. Each activity has a number, an
action and some parameters. Arcs between ellipses shown the flow of behaviour. Note
that CRESS defines flows and not a state machine; state is implicit.

Normally a branch means an alternative, but following a Fork activity it means a
parallel path. An arc may be labelled with a value guard or an event guard to control
whether it is traversed. If a value guard holds, behaviour may follow that path. An event
guard defines a possible path that is enabled only once the corresponding event occurs.

In CRESS, operation names have the form partner.port.operation. Fault names have
the form fault.variable, the fault name or variable being optional.

A CRESS rule-box, drawn as a rounded rectangle, defines variables and subsidiary
diagrams (among other things). Simple variables have types like Float f or String s.
CRESS also supports grid computing types such as Certificate (a digital security certifi-
cate), Name (a qualified name) and Reference (an endpoint reference that characterises
a service instance and its associated resources).

6 K.J. Turner and K.L.L. Tan

CRESS

/variable <— value
Catch fault

Compensate scope?

Compensation

Fork strictness?

Join condition?

Invoke operation output
(input faults*)?

Receive operation input

Reply operation output |
fault
Terminate

Meaning

assignment associated with a node or an arc

A handler for the specified fault. A fault with name and value
requires a matching Catch name and variable type. A fault with
only a value requires a matching Catch variable type. A fault is
considered by the current scope and progressively higher-level
scopes until a matching handler is found.

Called after a fault to undo work. Giving no scope means
compensation handlers execute in reverse order of being enabled.
A handler that defines how to undo work after a fault. A
compensation handler is enabled only once the corresponding
activity completes successfully. When executed, it expects to see
the same process state as when it was enabled.

Used to introduce parallel paths; further forks may be nested to
any depth. Normally, failure to complete parallel paths as
expected leads to a fault. This is strict parallelism (strict, the
default). Matched by Join.

Ends parallel paths. An explicit join condition may be defined
over the termination status of parallel activities. This gives the
node numbers of immediately prior activities, e.g. ‘1 && 2’
means these (and the prior ones) must succeed.

An asynchronous (one-way) invocation for output only, or a
synchronous (two-way) invocation for output-input with a partner
service. Potential faults are declared statically, though their
occurrence is dynamic.

Typically used at the start to receive a request for service. An
initial Receive creates a new process instance. Usually matched
by a Reply for the same operation.

Typically used at the end to provide an output response.
Alternatively, a fault may be thrown.

Ends a process abruptly.

Fig. 1. CRESS Notation (using BNF)

Structured types are defined using ‘[...]" for arrays and ‘{...}" for records. For exam-
ple, the following defines the variable scores. This is a record with fields: float length
and string array frequency. A typical value would be the string scores.frequency[2].

{ Float length [String word] frequency } scores

2.2 Content Analysis Using Grid Services

The examples in this paper are drawn from the field of document content analysis
(e.g. [13]). This is used for many purposes such as investigating disputed authorship of
a document, analysing different versions of a document to identify likely antecedents,
or comparing two documents for plagiarism. This is a rich field, so only a simplified
version is described in order to illustrate how orchestrated grid services can be used.

Graphical Composition of Grid Services 7

In the example of this paper, documents are compared for similarity using the fol-
lowing two metrics that lie in the range [0, 1]. For both of these, identical documents
have a ‘distance’ of 0. Documents with a ‘distance’ of 1 are maximally different.

Clause Length: The average number of words per clause is computed for each docu-
ment. Suppose the numbers are 6 and 8. The ‘distance’ between the documents is
the difference between these divided by the larger value: 856 ,1.e.0.25.

Word Frequency: the instances of each word are counted (disregarding common words)
and the words are placed in order of decreasing frequency. This gives an ordered list
of words for each document (truncated to some practical limit such as 50 words).
The ‘distance’ between the two word lists is then computed from the relative po-
sitions of each word in the two lists (counting the first as 0). Suppose ‘grid’ is the
second most frequent word in one list (i.e. position 1) but the fourth most frequent
in the other (i.e. position 3). The distance for this word is the difference between
their positions: 3 — 1, i.e. 2. If a word does not appear in the other list, its position
there is notionally the length of that list. Thus if ‘grid’ did not appear in the second
list (of size 50), the distance would be 50 — 1 or 49. This ensures that if a more
frequent word is missing, it has a greater distance. The total distance between two
word vectors is the sum of the distances for all the individual words, normalised to
yield a value between 0 and 1.

The content analysis example makes use of two external partner grid services that
could exist already or should be developed separately because they are generally useful:

Counter: This calculates various measures over a document. The clause operation com-
putes the average clause length. The word operation determines the words in de-
creasing frequency. The distance operation computes the metrics explained above
from the raw clause and word information.

Parser: This handles word lists for a document. The parse operation takes a document
as a string of text and splits it up into words (consecutive letters and possibly dig-
its), disregarding white space. Consecutive punctuation marks (e.g. :-”) are also
grouped as ‘words’. Like many grid services, the parser holds its results in persis-
tent storage and just returns an endpoint reference for the word list. This reference
can be used by other services to perform further analyses. The delete operation
removes a stored word list.

2.3 CRESS Description of the Scorer Service

The scorer is an auxiliary service that supports the main content analysis application.
Its CRESS description appears in figure 2. The rule-box to the bottom right of the figure
defines types and variables. The raw data is words — a reference to the word list being
analysed. The result is scores — the average clause length and word frequency list.
Initially the scorer receives a request to perform a score operation on the words list
(node 1). Since calculating the two distance metrics may be time-consuming, each is
computed concurrently (node 2). In one parallel branch, the counter service is invoked
to calculate the average clause length (node 3). In another parallel branch, a different

8 K.J. Turner and K.L.L. Tan

Start

~N
Catch counterError.reason

7 Reply
scorer.text.score
scorerError.reason

1 Receive
scorer.text.score
words

‘ 8 Terminate

4 Invoke

counter.text.clause counter.textword
words length words frequency

counterError.reason counterError.reason

e
i

3 Invoke

K
5 Join
38&4
' Uses
I scores.length <- length [String word] frequency

/scores frequency <- frequency | Floatlength
String reason

{

Float length [String word] frequency
} scores
Reference words

6 Reply
scorer.textscore
scores

Fig. 2. CRESS Description of The Scorer Service

instance of the counter service is invoked to determine words in decreasing order of
frequency (node 4). Where both paths converge at node 5, they must have produced a
successful result (‘3 && 4’). The two metrics are combined into one record (arc leading
to node 6). Finally, the scores are returned by the scorer to its caller (node 6).

The scorer must allow for the counter process faulting. For example, the word list
may be empty or may contain only punctuation. Both invocations of the counter stat-
ically declare that a counterError may occur (node 3 and 4). If this happens, the fault
is caught (arc leading to node 7). The scorer then returns the fault reason to its caller
(node 7) and terminates (node 8).

2.4 CRESS Description of the Matcher Service

The matcher offers the primary content analysis service to the user. Its CRESS descrip-
tion appears in figure 3. The rule-box at the bottom right again defines types and vari-
ables. The raw data is fexts — text strings containing the two documents. The analysis
yields metrics — the clause length and word frequency distances. The final entry in the
rule-box / SCORER’ indicates that the matcher depends on the scorer service.
Initially the matcher receives a request to perform the match operation on the texts
(node 1). Since the documents are independent and may be large, their metrics are
computed separately on two parallel paths (node 2). Each starts by setting the relevant
text (textl/text2 on the arc leading to node 3/4). The parser is invoked to create a word
list from a document (node 3/4). The word lists are held by the parser, and returned

Graphical Composition of Grid Services

1 Receive
matcher.textmatch
texts

/text! <-texts.text! /text2 <-texts.text2

7

Compensation

6 Invoke 7 Invoke

5 Invoke scorer.textscore scorer.textscore
parser.textdelete words1 scores1 words2 scores2
words1 scorerError.reason scorerError.reason

9 Invoke
parser.textdelete
words1

10 Invoke
parser.textdelete

words2
11 Join 98&10

1
/results.scores? <- scores1
[results.scores?2 <- scores2

12 Invoke
counter.textdistance
results metrics

13 Reply
matcher.textmatch
metrics

Start

Catch .reason

14 Compensate

15 Reply
matcher.textmatch
matcherError.reason

3 Invoke 4 Invoke
parser textparse parser.textparse -
text! words1 text2 words2 16 Terminate
parserError.reason parserError.reason

\

Compensation

8 Invoke
parser.textdelete
words2

\

-
Uses

Float clause frequency
} metrics

{
Float length [String word] frequency
} scores1,scores2
}results

{

Float length [String word] frequency
} scores1,scores2
String text1 text2

{
String text1, text2
}Hexts
Reference words1,words2
/ SCORER

Fig. 3. CRESS Description of The Matcher service

as endpoint references (wordsl/words2). The scorer is then invoked to compute the
metrics (scoresl/scores2 in node 6/7). The word lists have now served their purpose
and are deleted (node 9/10). The converging paths must both be successful (‘9 && 10’
in node 11). The separately computed scores are combined (arc leading to node 12) and
passed the counter to compute distances (node 12). The matcher returns the resulting

metrics to its caller (node 13).

The matcher allows for faults in the services it calls: either of two invocations of the
parser or the scorer may fail. Any such fault is caught (arc leading to node 14). The
use of a fault variable (reason) without a fault name means that only a fault value is
required: either parserError or scorerError is caught. Compensation is invoked by the

10 K.J. Turner and K.L.L. Tan

fault handler to undo any actions that have been taken (node 14). The matcher returns
the fault to its caller (node 15) and terminates (node 16).

Compensation may be needed after invoking an external partner, since this is of-
ten where work needs to be undone after a fault. The parser invocations to store data
(node 3/4) make permanent changes and so have associated compensation: the cor-
responding word list is deleted (node 5/8). A compensation handler is enabled once
its associated activity completes. If compensation is invoked without an explicit scope
(node 14), compensation handlers are invoked in reverse order (most recent first). If one
parser invocation succeeds but the other fails, only the former will be compensated.

As has been seen, the matcher service orchestrates the actions of two external partner
services (counter and parser) as well as the scorer service (figure 2). In turn, the scorer
service orchestrates further operations of the counter partner. Although four services
now have to cooperate, the user of the matcher service sees it as a whole. This is a
major advantage, because the detailed design of the service is then hidden.

The major issue is whether the services work together smoothly, or whether there
are interoperability problems. Even though this is a comparatively small example, it
will be appreciated that there are many possibilities for error. It is very easy to make a
mistake when calling a service, for example supplying an integer where a float is ex-
pected. Deadlocks are also a risk. Many more subtle problems can arise from semantic
incompatibilities among the services. For these reasons, it is highly desirable to embed
grid service development within a rigorous methodology.

2.5 The CRESS Service Configuration

Now that the various services have been introduced, the CRESS configuration diagram
can be shown. Figure 4 shows how the services here are described. The Deploys clause
lists the tool options and, following ‘/°, the services to be deployed. Although only
MATCHER is named, this implicitly includes all of the other services because of the
inferred dependencies. The parameters of each service then follow in the configuration
diagram. All services, such as COUNTER, have a namespace prefix (‘cntr’), a names-
pace URI (Uniform Resource Name, ‘CounterPoint’), and a base URI where they are
deployed (‘localhost:8880/wsrf’). As can be seen, in this case the services were de-
ployed on the local computer. However, they can be deployed anywhere in the network.

Grid services (counter, parser here) may have resources, declared after the other
parameters. The counter has no resources (shown as ‘-’). The parser has a resource: the
word list it stores, identified by fextName. Every instance of the parser has a unique
resource value, identified by its resource key in grid terminology. A composite service

Deploys tool options | MATCHER

COUNTER cntr urn:CounterPoint localhost:8880/wsrf

MATCHER mich urn:MatchMaker localhost:8080/active-bpel

PARSER pars urn:WordSmith localhost:8880/wsrf String textName
SCORER scor urn:UnderScore localhost:8080/active-bpel

Fig. 4. CRESS Description of The Service Configuration

Graphical Composition of Grid Services 11

may also have resources. For example, if the matcher service were stateful then it too
would have resource declarations.

2.6 Translation of the CRESS Diagrams

Translating the CRESS representation of web services has been described previously
for BPEL [20]. However, the work reported in this paper has considerably extended and
specialised this to handle grid services:

A wider range of data types is now supported, including arrays and arbitrarily
nested structured types. Specialised types have been added for dealing with grid
services, such as certificates and endpoint references.

Additional orchestration constructs have been added to match BPEL better.
Support has been introduced for external partners shared amongst a number of ser-
vices. Special treatment is needed to merge such descriptions in different diagrams.
Grid service resources are now handled.

The CRESS diagrams (scorer, matcher, configuration) hold all that is needed to auto-
matically generate a BPEL implementation and a LOTOS specification. Figure 5 com-
pares translations of the content analysis example in figures 2 to 4:

— The fixed code is the framework common to all grid applications. This is substantial
in the case of LOTOS because it contains many complex data types.

— The automatically generated code is shown for data types and behaviour. The BPEL
translation yields many files: one BPEL file per service, one WSDL file per ser-
vice/partner, and several deployment files. In addition, the WSDL files are automat-
ically converted into Java. The LOTOS translation is a single file.

— The code for the external partners (counter, parser) has to be written manually. The
Java coding conventions for grid services require several files per partner.

Target Fixed Code Generated Code Partner Code Total
Files Types Behaviour Files Behaviour

BPEL 20 51 14570 1640 10 2830 19060

LoTtos 840 1 530 400 2 290 2060

Fig. 5. Comparison of BPEL and LOTOS Translations (l/ines of code except for Files columns)

The BPEL implementation is substantially larger than the LOTOS specification, de-
spite the fact that the LOTOS has a significant common overhead in data types. LOTOS
has to explicitly specify functions on numbers, strings, etc. that would be expected in
an implementation language. With larger examples, LOTOS is even more compact com-
pared to BPEL. The most striking difference is in the large number of files required to
support BPEL.

12 K.J. Turner and K.L.L. Tan

Counter \ / Scorer

Globus Toolkit 4 ActiveBPEL

Parser 1 \ Matcher

A
Y

Fig. 6. Content Analysis Service Deployment

3 Translating Web Services to BPEL

Once the CRESS service diagrams have been created, their translation into BPEL/WSDL
is automatic. The principles behind translating web services are outlined in [20]. Only
a high-level description is given here, particularly covering where grid services differ.

3.1 Service Creation

Orchestrating grid services require a considerable amount of XML that is generated
automatically by CRESS. Translation and deployment of a CRESS diagram is entirely
automated, except for the one-off implementation of partner grid services. Partner ser-
vices are automatically deployed using GT4 (Globus Toolkit version 4), while the or-
chestrating process is automatically deployed using ActiveBPEL.

The most important generated code is the BPEL that describes the orchestration. A
WSsDL definition is created for this process since it is a grid service in its own right.
A WSDL file is also created for message and type definitions that are common to the
process and its partners.

The translation from CRESS to BPEL is complex, partly because BPEL needs to be
defined in a particular order, and partly because a lot of information has to be inferred.

3.2 Service Deployment

The deployment architecture is shown in figure 6. The grid services (counter, parser) are
executed with GT4. Their orchestration (matcher, scorer) is handled by ActiveBPEL 2.0.
Both GT4 and ActiveBPEL deploy services within a container that uses AXIS (the
Apache SOAP engine). In principle, GT4 and ActiveBPEL could be executed within
the same Apache Tomcat container. In practice, this is not feasible with the current
versions. GT4 presently uses an older version of AXIS that is incompatible with Ac-
tiveBPEL; an updated version of GT4 is required before this can be resolved. For now,
GT4 and ActiveBPEL are run in separate containers. Actually, this is reasonable since
BPEL can coordinate grid services running on completely different computers. This
would be quite likely in a realistic deployment of the content analysis example de-
scribed in this paper.

GT4 currently imposes another limitation on the orchestration of grid services. The
most desirable form of security is the so-called WS-SecureConversation that allows
credential delegation in grid terminology. Unfortunately the current implementation

Graphical Composition of Grid Services 13

of GT4 requires all services to use the same container for delegation to work. The
authors have developed a solution combining GT4 and ActiveBPEL, but the current
AXIS incompatibilities mean this cannot be used yet. A newer version of GT4 will
allow credential delegation to be realised.

Current limitations of ActiveBPEL mean resources have to be treated transparently.
It is intended to make resources directly available to the orchestrating process. End-
point references cannot be used directly by ActiveBPEL. It is planned to make BPEL
processes behave more like grid services and less like web services.

3.3 Service Flow

BPEL may use a variety of constructs to describe the flow: conditions (if, switch), se-
quences (sequence), loops (while), arbitrary parallel flows (flow), and several kinds of
handlers (event, fault, compensation, correlation). CRESS simplifies this to conditions
(expression guards), arbitrary flows, and one kind of handler (event guard). A number
of constructs used by BPEL are intentionally hidden by CRESS. For example scopes are
implicit, and specialised constructs such as onMessage as opposed to receive are used
implicitly by CRESS as required.

CRESS automatically determines and declares the links among activities, which are
then chained using BPEL source and target elements. The BPEL function getLinkStatus
is used with Join to check whether a linked activity has terminated successfully.

A CRESS handler is translated into the corresponding type of BPEL handler. For ex-
ample, Catch and CatchAll introduce a fault handler, while Compensation introduces
a compensation handler. In principle, handlers may be defined in any scope including
the global one. In fact, WS-BPEL does not allow global compensation handlers. CRESS
regularises this situation by allowing handlers at two levels. Global handlers are trans-
lated as part of the top-level flow. The other place where CRESS allows handlers is in
association with Invoke. Although this is a restriction compared to BPEL, it is where a
handler is mostly likely to be required anyway.

3.4 Supporting Orchestration

Data types in CRESS are either simple ones defined by XML schemas (e.g. float, string)
or are arbitrarily nested structures of records and arrays. Built-in types are used for the
former, while complex types are generated for the latter. CRESS automatically handles
the rather different ways in which BPEL uses variables: as message variables (input,
output) or as data variables (assignment, expression).

BPEL processes orchestrate external partner services. In fact these may be web ser-
vices or grid services (more precisely, stateless or stateful). The WSDL for partners is
automatically generated from the CRESS diagrams, along with service deployment de-
scriptors. If a partner service already exists, it can be used directly. The CRESS view is
likely to be a subset of the partner WSDL, since an orchestrating process is likely to use
only certain ports and operations of an already defined partner. If a partner web service
does not already exist, its WSDL is translated into Java using the GT4 tool wsdl2java.
The skeleton partner service must then be implemented manually.

14 K.J. Turner and K.L.L. Tan

3.5 Compatibility of ActiveBPEL and GT4

Resource addressing is a key issue for grid services. State information is handled sepa-
rately from the service itself. A WS-Resource pair (service plus state) is encoded in an
endpoint reference, as defined by the WS-Addressing schema. GT4 handles this implic-
itly, meaning that the ports used by clients are bound to a service and resource. To use
another resource with the same service, a separate endpoint reference is created with
the relevant resource key.

However, ActiveBPEL is not able to handle such a resource implicitly. Endpoint ref-
erences thus have to be passed explicitly as parameters to grid service partners, allowing
them to infer resource pairs. This requires compatibility of the WS-Addressing used by
GT4 and ActiveBPEL. Unfortunately, the endpoint references generated by GT4 do not
currently conform to the usual schema. Instead a variant schema with a ReferencePa-
rameters element is used, leading to incompatibility. By altering the schemas in use,
it is possible share endpoint references consistently. However, work remains to allow
ActiveBPEL to use resources directly.

Grid services supported by GT4 require a document/literal SOAP binding. This is one
of the binding styles that complies with the WS-Interoperability standard. However,
this binding does not convey the operation name. Instead, the structure of the SOAP
message body must be used implicitly to identify the operation being invoked. This
causes ambiguity when a service has several operations with the same input signature,
forcing use of distinct message parts even though they are not logically necessary.

4 Translating Grid Services to LOTOS

CRESS also translates grid services in LOTOS. Only the rigorous analysis this permits is
discussed here. LOTOS was originally standardised for specifying and analysing com-
munications standards (Open Systems Interconnection). However, LOTOS is a general-
purpose language that supports precise specification of both behaviour and data: it is a
process algebra supplemented by algebraic data types.

A Lortos specification is automatically generated from the same CRESS diagrams
that are translated into BPEL/WSDL. A default specification is provided for external
partner services, though this just respects their operation interfaces. For more detailed
analysis, the partners are specified manually.

Because CRESS is graphical, it is more understandable and compact than the corre-
sponding code. Although this paper is focused on practical development of composite
grid services, the use of a formal method is an important first step in their design. Apart
from giving a precise definition of what orchestration means, it allows rigorous analysis
of services prior to implementation. The use of formal methods is thus integrated into
more conventional development techniques.

In practice, grid services are manually debugged. The generated LOTOS can, of
course, be manually simulated as well. However, an important benefit of the formal-
isation is that it supports a wide variety of automated analyses.

An important issue in orchestrating grid services is to ensure their interoperability.
Problems arise from simple misinterpretation of interfaces or from more subtle semantic

Graphical Composition of Grid Services 15

incompatibility. Such problems often lead to deadlock in LOTOS terms, as determined
by automated behaviour exploration or through model checking.

Service properties can also be model checked. Safety and liveness properties of grid
services can be formulated in ACTL (Action-based Computational Temporal Logic).
For example, the matcher service must not fault (safety), and an invocation of it must
eventually receive a response (liveness). Unfortunately the complex data types and infi-
nite data sorts make model checking somewhat impractical. For this reason, the authors
favour the use of rigorous validation instead of verification.

MUSTARD (Multiple-Use Scenario Test and Refusal Description [21]) has been de-
veloped as a language-independent and tool-independent approach for expressing use
case scenarios. These scenarios are automatically translated into the chosen language
(here, LOTOS) for automatic validation against the specification. This is useful for initial
validation of a specification, and also for later ‘regression testing’ following a change in
the service description. Scenario-based validation is also good for checking interference
among supposedly independent services — the so-called feature interaction problem. In-
teractions may arise for technical reasons (e.g. conflicting services activated by the same
input) or for resource reasons (e.g. services sharing a resource or external partner).

A major advantage of MUSTARD is that the use of an underlying formal method is
entirely hidden from the user. An automated procedure translates CRESS and MUSTARD
into LOTOS, validates the scenarios, and reports the analysis in language-independent
terms. In other words, the use of LOTOS (or any other formal language) is invisible. In
fact, the tool user merely draws diagrams and clicks a button to check their integrity.

Grid services are formally validated by MUSTARD scenarios that check critical as-
pects of their behaviour. It is possible to check services in isolation as well as in com-
bination. This can effectively and efficiently detect service interactions, though failure
to find interactions does not mean the services are interaction-free. MUSTARD supports
scenarios with sequences, alternatives, non-determinism, concurrency and service de-
pendencies. In addition, both acceptance tests and refusal tests may be formulated.

5 Conclusions

It has been seen how CRESS has been adapted to support orchestration of grid services.
This offers the advantage that new composite services can be constructed from existing
ones. As a realistic example, document content analysis has been used to explain how
grid services can be orchestrated.

CRESS descriptions of composite grid services are translated into BPEL/WSDL for
implementation. The orchestration is performed by ActiveBPEL, while the partner grid
services are executed by GT4. The same CRESS descriptions are also translated into
Lotos for rigorous validation and verification. The whole development process is
highly automated. The use of advanced software engineering techniques (visual pro-
gramming, formal methods) has thus been integrated into the current grid computing
practice.

Content analysis has been used as an example of how orchestration can be useful in
grid computing. This is a realistic problem, although the illustration is a small one. The
authors have also researched the use of grid computing in social science, specifically

16

K.J. Turner and K.L.L. Tan

grid services for occupational data analysis. Services from this domain are much more
complex, and yet can be formalised and analysed rigorously using CRESS.

It has hopefully been demonstrated that CRESS is valuable in orchestrating grid ser-

vices, implementing and analysing them.

Acknowledgements

Larry Tan’s work was supported by the UK Economic and Social Research Council
under grant RES-149-25-1015. The authors are grateful for the collaboration with their
GEODE colleagues, particularly Paul Lambert (University of Stirling) and Richard Sin-
nott (University of Glasgow).

References

1.

10.

11.

T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu, D. Roller,
D. Smith, S. Thatte, I. Trickovic, and S. Weerawarana, editors. Business Process Execution
Language for Web Services. Version 1.1. BEA, IBM, Microsoft, SAP, Siebel, May 2003.

. A. Arkin, S. Askary, B. Bloch, F. Curbera, Y. Goland, N. Kartha, C. K. Lie, S. Thatte, P. Yend-

luri, and A. Yiu, editors. Web Services Business Process Execution Language. Version 2.0
(Draft). Organization for The Advancement of Structured Information Standards, Billerica,
Massachusetts, USA, Dec. 2005.

. K.-M. Chao, M. Younas, N. Griffiths, I. Awan, R. Anane, and C.-F. Tsai. Analysis of grid

service composition with BPEL4AWS. In Y. Shibata and J. Ma, editors, Proc. 18th. Advanced
Information Networking and Applications, volume 1, pages 284-289. Institution of Electrical
and Electronic Engineers Press, New York, USA, 2004.

. A. Chirichiello and G. Salaiin. Encoding abstract descriptions into executable web services:

Towards A formal development. In Proc. Web Intelligence 2005. Institution of Electrical and
Electronic Engineers Press, New York, USA, Dec. 2005.

. W. Emmerich, B. Butchart, L. Chen, B. Wassermann, and S. L. Price. Grid service orches-

tration using the business process execution language (BPEL). Grid Computing, 3(3-4):
283-304, Sept. 2005.

. A. Ferrara. Web services: A process algebra approach. In Proc. 2nd. International Confer-

ence on Service-Oriented Computing, pages 242-251. ACM Press, New York, USA, Nov.
2004.

. H. Foster, S. Uchitel, J. Kramer, and J. Magee. Compatibility verification for web service

choreography. In M. Aiello, editor, Proc. 2nd. International Conference on Service-Oriented
Computing, New York, USA, Nov. 2004. ACM Press.

. L Foster, C. Kesselman, J. M. Nick, and S. Tuecke. Grid services for distributed system

integration. Supercomputer Applications, 35(6), 2002.

. X. Fu, T. Bultan, and J. Su. Analysis of interacting BPEL web services. In Proc. 13th.

International World Wide Web Conference, pages 621-630. ACM Press, New York, USA,
May 2004.

S. Graham, A. Marmakar, J. Mischinsky, I. Robinson, and I. Sedukhin, editors. Web Ser-
vices Resource. Version 1.2. Organization for The Advancement of Structured Information
Standards, Billerica, Massachusetts, USA, Apr. 2006.

ISO/IEC. Information Processing Systems — Open Systems Interconnection — LOTOS — A
Formal Description Technique based on the Temporal Ordering of Observational Behaviour.
ISO/IEC 8807. International Organization for Standardization, Geneva, Switzerland, 1989.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Graphical Composition of Grid Services 17

ITU. Specification and Description Language. ITU-T Z.100. International Telecommunica-
tions Union, Geneva, Switzerland, 2000.

K. Krippendorff. Content Analysis: An Introduction to Its Methodology. Sage, Thousand
Oaks, California, USA, 2004.

S. Majithia, D. W. Walker, and W. A. Gray. Automated composition of semantic grid ser-
vices. In Proc. 3rd. UK e-Science All Hands Meeting. University of Nottingham, UK, Aug.
2004.

T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, M. Greenwood, T. Carver, K. Glover,
M. R. Pocock, A. Wipat, and P. Li. Taverna: A tool for the composition and enactment of
bioinformatics workflows. Bioinformatics, 20(17):3045-3054, 2004.

C. Pautasso. JOpera: An agile environment for web service composition with visual unit
testing and refactoring. In Proc. IEEE Symposium on Visual Languages and Human Centric
Computing. Institution of Electrical and Electronic Engineers Press, New York, USA, Nov.
2005.

S. Rosario, A. Benveniste, S. Haar, and C. Jard. Net systems semantics of web services
orchestrations modeled in ORC. Technical Report PI 1780, IRISA, Rennes, France, Jan.
2006.

A. Slomiski. On using BPEL extensibility to implement OGSI and WSREF grid workflows.
In Proc. Global Grid Forum 10, Berlin, Germany, Mar. 2005. Humboldt University.

K. J. Turner. Formalising web services. In F. Wang, editor, Proc. Formal Techniques for Net-
worked and Distributed Systems (FORTE XVIII), number 3731 in Lecture Notes in Computer
Science, pages 473-488. Springer, Berlin, Germany, Oct. 2005.

K. J. Turner. Representing and analysing web services. Network and Computer Applications,
Mar. 2006. In press.

K. J. Turner. Validating feature-based specifications. Software Practice and Experience,
36(10):999-1027, Aug. 2006.

World Wide Web Consortium. Web Services Description Language (WSDL). Version 1.1.
World Wide Web Consortium, Geneva, Switzerland, Mar. 2001.

A UML 2.0 Profile for Architecting B3G
Applications

Mauro Caporuscio and Valerie Issarny

INRIA-Rocquencourt
Domaine de Voluceau
78153 Le Chesnay, France

{mauro.caporuscio, valerie.issarny}@inria.fr

Abstract. B3G is an emerging network technology which conceives the
convergence of telecommunication and IP-based networks for providing
enhanced services able to transfer both voice and non-voice data through
wired and wireless networks. Moreover, B3G networks can be no longer
considered as “passive” entities which only transport data between end-
points, but they must be considered as “active” parties that have their
own behavior and provide services. This creates a completely new appli-
cation domain where applying current software engineering design tools,
such as software architectures, fails. In fact, dealing with B3G networks
requires to explicit low-level details usually abstracted by the architec-
tural descriptions.

To this extent, we present an ongoing work on investigating B3G-
oriented application modeling. In particular, we propose an enhanced
UML profile to define and analyze software architectures that explicitly
exploit the B3G domain properties.

1 Introduction

Beyond Third-Generation (B3G) [30] network is an emerging technology which
conceives the convergence of telecommunication networks with IP based net-
works. Services associated with B3G provide the ability to transfer both voice
data (i.e., a telephone call) and non-voice data (i.e., downloading information,
exchanging email, and instant messaging) through different types of network, ei-
ther wired or wireless. This opens to a new world where distributed applications
can not only interact with each other over plenty of different networks, but they
can also interact with non-software entities (i.e., humans), by exploiting services
offered by telecommunication networks.

Such a vision breaks some assumptions posed so far by the software engineer-
ing community and requires for adapting/revising the software life-cycle, and the
related tools, since the early activities. In particular, the software design is the
first process activity to be affected by the B3G application domain. The software
design aims to build the first description, both behavioral and structural, of the
entire system under development. Consequently, since the architectural design is
described by means of Software Architecture (SA) modeling [5][25], also this one
should be adapted/revised accordingly.

N. Guelfi and D. Buchs (Eds.): RISE 2006, LNCS 4401, pp. 18, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A UML 2.0 Profile for Architecting B3G Applications 19

SA has been largely accepted as a well suited tool to achieve a better soft-
ware quality while reducing the time-to-market. This results in a proliferation
of different Architectural Description Languages (ADLs), defined by both the
academia and the industry [20].

The use of SA descriptions allows software engineers to model large, com-
plex applications by using suitable abstractions of the system components and
their interactions. This forces the separation of architectural concerns from other
design ones, thus abstracting away many details. On the other hand, SA descrip-
tions allow for analysis and verification of architectural choices, both qualitative
and quantitative, since the early stages of the software life-cycle [6].

However, the use of SA fails when specifying B3G-oriented applications. In
fact, dealing with B3G networks requires to explicit those low-level details usu-
ally abstracted by SA specifications. To this extent, we argue networks involved
in B3G scenarios can be no longer considered as “passive” entities which only
transport data between end-points, but they must be considered as “active”
parties that have their own behavior and provide services. Hence, since they
actively affect the overall system’s performance and behavior, they cannot be
taken apart but must be considered, along with all their characteristics, within
the design process. According to this and due to the high degree of network
heterogeneity inherent to the B3G application domain, it is important to raise
up some characteristics such as network type, quality of service, security, network
services, etc.

This paper presents an ongoing work on investigating B3G-oriented applica-
tion modeling. In particular, we show how, starting from a small survey of the
networks involved in B3G scenarios, it has been elicited a set of properties that
characterizes B3G-oriented applications and, then we present an enhanced UML
profile [24] for explicitly defining and analyzing SAs that take into account these
properties of interest.

The paper is organized as follows: Section 2] first describes the different net-
works available in the B3G application domain and then presents the sets of
properties elicited. Section Bl presents the B3G-oriented UML profile we designed
while Section Ml discusses the analysis aspects related to the B3G application do-
main. Finally, Section Bl concludes and discuss future work.

2 B3G Network Properties Elicitation

B3G network technology indicates the convergence of telecommunication net-
works with TP based networks. Services associated with B3G provide the abil-
ity to transfer both voice data and non-voice data through different types of
network, either wired or wireless. In this setting, wireless networks are catego-
rized into three groups based on their coverage range: (i) Wireless Wide Area
Networks (WWAN) that includes wide coverage area technologies such as 3G
cellular (UMTS), Global System for Mobile Communications (GSM), General
Packet Radio Service (GPRS), i-Mode, etc. . ., (i7) Wireless Local Area Networks
(WLAN) that includes 802.11, HiperLAN, and several others, and (ii) Wireless

20 M. Caporuscio and V. Issarny

Personal Area Networks (WPAN) that represents wireless personal area network
technologies such as Bluetooth and IrDA.

In this section we discuss the networks state-of-the-art by eliciting the prop-
erties of interest needed to architect B3G applications.

2.1 Networks in B3G

The widely accepted way to achieve interworking between heterogeneous network
is the use of TCP/IP protocol suite. Figure [Il shows how the protocol stacks,
implemented by (some) networks involved in B3G scenarios, relate to TCP /TP
standard. In the following, we give a high-level description of such networks and
their propertiesﬂ, namely Quality of Service (QoS), security, etc. ..

TCP

PR

RFCOMM
CSD / HSCSD SNDCP L2CAP
PDCP
MM LLC HCl
RR RLC RLC LMP
MAC ‘ LAP-DM MAC MAC BASEBAND
Physical | GSMRF GSMRF L1 RADIO
a) LAN/WLAN b) GSM <) GPRS d) UMTS e) Bluetooth

Fig. 1. Network protocol stacks underlying TCP /TP

Ethernet (IEEE 802.3) — Nowadays, the prominent technology for providing
wired LANSs is Ethernet [16]. Based on the shared-bus concept, it operates differ-
ent data transfer rates (ranging from 10Mbps to 1Gbps) but it does not provide
any support for QoS management neither any other type of service. As shown
in Figure [[la, using TCP/IP over this network does not require any additional
effort.

WiFi (IEEE 802.11) — The WiFi 802.11 standard [I5] (afterward enhanced
by other task groups) defines the MAC and Physical levels in order to create
Wireless LANs. It is worth noticing that WiFi network may operate in two
different modes: (i) infrastructure mode and (ii) ad-hoc. While infrastructure
mode defines a controlled network composed of a number of managed fixed nodes
that provides access points to wireless clients, ad-hoc mode defines a self-managed
network where wireless clients directly communicate each other without any
control. Also in this case, using TCP/IP over this network does not require any
additional effort (see Figure[dla).

! For any further detail, please refer to the relative citations.

A UML 2.0 Profile for Architecting B3G Applications 21

Global System for Mobile Communications (GSM) — The Global System
for Mobile Communications standard [22] specifies infrastructures and services
for digital cellular networks. GSM is based on circuit-switched protocol, where
a traffic channel is allocated to a user for the entire duration of a call and it
is simply unused if there is no data to be transmitted during the call. This
limits both the data rates and the number of users that can be supported.
Moreover, GSM specifies two circuit-switched protocols to tunnel and convoy
data throughout the network. Thus, GSM clients can use TCP/IP directly on
top of them (see Figure [IIb).

General Packet Radio Service (GPRS) — General Packet Radio Service
(GPRS) [I] is a mobile communication standard based on packet-switched radio
transmission. The main advantage over circuit-switched radio technologies is its
handling of the radio resources. GPRS is structured as a GSM overlay, although
it does require some changes to a few of the basic GSM network elements. GPRS
provides an architecture for integrating external packet-data networks (e.g., the
Internet backbone wired network) and mobile stations (i.e., cell phones, PDAs,
and other such mobile devices). Thus, mobile stations are enabled to use TCP /IP
based protocols directly on top of GPRS (see Figure [lc).

Universal Mobile Telecommunication System (UMTS) — The Universal
Mobile Telecommunication System (UMTS) [2] is part of the 3G Network family
which defines both the circuit-switched and the packet-switched transmission
for voice and data communications relatively. Also in this case, clients can use
TCP/IP based protocols directly on top of UMTS (see Figure [[ld). Moreover,
important characteristics of UMTS are (¢) the high data transfer rate (up to
2Mbps) and (4¢) the ability to negotiate/manage different fixed classes of QoS [3].

Bluetooth — The Bluetooth [8] technology is the de-facto standard for achiev-
ing short-range WPANSs. In particular, Bluetooth allows users to set up wireless
ad-hoc networks that achieve real-time voice and data exchange between limited-
resources devices. However, Bluetooth does not directly support TCP/IP proto-
cols and then the use of PPP protocol [23] is required (as shown in Figure[Ile).

2.2 QoS—Related Properties of Interest

This section describes the characteristics of the networks introduced above by
summarizing their properties of interest. In particular, we firstly presents com-
mon QoS attributes that apply to all the B3G networks and, then we describe a
set of enhanced QoS attributes that are specific of telecommunication networks
such as GSM, GPRS, UMTS.

General QoS Properties — The set of general QoS properties is composed of
few attributes that identify the basic metrics needed for describing the perfor-
mance of a network. In particular, they relates to the bandwidth, transmission
time, packet ordering and error ratio provided by the network under analysis:

22 M. Caporuscio and V. Issarny

— Max Bitrate: identifies the maximal data transfer rate that can be sustained
between two end-points.

— Transfer delay: measures the time elapsed for delivering a packet from a
sender, trough the network, to a receiver.

— Jitter: is calculated as the variation of the transfer delay attribute from
one packet to the next packet within the same packet stream/flow.

— Delivery order: indicates whether the network shall provide in—sequence
packets delivery or not.

— Packet Error Ratio:is the fraction of packets lost or detected as corrupted
OT erroneous.

Advanced QoS Properties — In order to fully describe B3G-related QoS
properties we need to extend the set described above by adding some attributes
specifically related to the GSM, GPRS, UMTS telecommunication networks. In
fact, due to the inherent complexity of such networks, in terms of infrastructures
and provided services, the general QoS properties set is not sufficient to describe
all possible QoS purposes.

To this extent, UMTS QoS specification [3] defines four different classes of QoS
related to the services provided by the network: (i) Conversational defines the
QoS needed for real-time video/audio conversations (bidirectional), (ii) Stream-
ing defines the QoS needed for real-time video/audio streaming (unidirectional),
(#i1) Interactive defines the QoS needed for achieving data communication used
for request/response patterns (i.e., HT'TP interactions) and, (iv) Background
defines the QoS needed for providing background traffic (i.e., email, SMS/MMS
messaging). Such classes are defined basing on both the general attributes de-
tailed above and the following list of advanced attributeﬂg:

— Traffic Class: is a string which identifies the class membership (i.e., “Con-
versational”, “Streaming”, “Interactive”, “Background”).

— Guaranteed Bitrate: defines the guaranteed number of bits delivered within
a period of time, divided by the duration of the period.

— Max. SDU size: is the maximum size (number of octets) for which the net-
work shall satisfy the QoS negotiated.

— SDU format info: is a list of possible exact size of SDU. This allows the
up-layer application to specify the SDU size in order to let the bearer to be
less expensive.

— Residual bit error ratio: is the undetected bit error ratio in the deliv-
ered SDU.

— Delivery of erroneous SDUs: specifies whether SDUs detected as erro-
neous shall be delivered or discarded.

— Traffic handling priority: represents the relative importance for han-
dling of all SDUs belonging to the UMTS bearer.

2 The following QoS attributes defined by UMTS cannot be directly applied to GSM
and GPRS networks. However, the UMTS QoS Specification [3] defines how to map
QoS attributes from UMTS to GSM/GPRS in order to achieve interworking.

A UML 2.0 Profile for Architecting B3G Applications 23

— Allocation/Retention priority: is the relative importance for alloca-
tion/retention of UMTS bearer.

— Source Statistic descriptor: may be either “speech” or “unknown” and
defines the characteristics of the of SDU’s source.

— Signaling Indication: indicates if the SDU is for signaling or not.

2.3 Network Services

As introduced above, in our vision B3G networks are no longer “passive” entities,
but they are “active” parties that have their own behavior and provide services
to the end-users. Hence, in this section, we briefly describe some of these services.

IEEE 802.3 and 802.11 — While Ethernet does not provide any service, WiFi
offers some basic security services such as identification, encryption and authen-
tication.

— Service Set Identifier (SSID) is a 32 alphanumeric characters code attached
to all packets transmitted on a WiFi network to identify each packet as part
of that network. In order to communicate each other, all the clients accessing
the network must share the same SSID.

— Wi-Fi Protected Access (WPA and WPA2) is a encryption protocol designed
to secure wireless networks. In order to access the network every clients must
be provided with a pre-shared key that is used to encrypt/decrypt network
packets.

Global System for Mobile Communications (GSM) — Services provided
by the GSM network are:

— Basic voice call services (i.e., incoming and outgoing call management) and
optional enhanced voice call services (i.e., Call Forwarding, Call Hold, Call
Waiting, Barring of Outgoing/Incoming Calls, ...)

— A circuit-switched data transfer service which allows users to send/receive
data streams. In particular, GSM defines two distinct circuit-switched data
protocols: (i) the Circuit Switched Data (CSD) and the (i) High-Speed
Circuit-Switched Data (HSCSD). Due to a fixed amount of bandwidth is
dedicated to connections over CSD and HSCSD (9.6Kbps and 14.4Kbps re-
spectively), they are charged on a per-second basis, regardless of the amount
of data sent over the link.

— Short Message Service (SMS) which allows users to send/receive textual
messages.

— mobility management service which manage the client mobility by support-
ing handover and network interoperability (aka global roaming).

— the GSM network provides a secure access mechanism based on personal
information stored on the Subscriber Identity Module (SIM) card. In par-
ticular, the communications between the subscriber and the base station is
encrypted by using a crypt variable stored on the SIM.

24 M. Caporuscio and V. Issarny

General Packet Radio Service (GPRS) — As introduced above, GPRS is
an extension of GSM which aims to upgrade the GSM data transfer services. In
particular, services provided by GPRS are:

— Packet-switched data transmission protocol where bandwidth is used only
when there is actually data to transmit. Hence, the billing policy for this
type of connection is by the kilobyte instead of by the second.

— Short Message Service (SMS) which allows users to send/receive textual
messages.

— Since GPRS is based on existing GSM networks, they share the same secure
access mechanism and encryption facility.

Universal Mobile Telecommunication System (UMTS) — UMTS services
are grouped into three classes: (i) teleservices which support the same teleservices
handled by GSM (i.e., speech, SMS), (i) facsimile services which provide the abil-
ity to send and receive fax, and (iii) bearer services which provide the capability
for data transfer between end-points. In particular, the bearer services are:

— Clircuit switched data services and real-time data services which allow for
interworking with the GSM network.

— Packet switched data services which allow for interworking with packet net-
works such as IP-networks and LANs. This service provide also mechanisms
for ensuring packet based handover between GSM and UMTS.

Bluetooth — Bluetooth provides services for transmitting both voice and data,
and for service discovery:

— Asynchronous Connectionless (ACL) provides a packet switched service for
data transmission.

— Synchronous Connection Oriented (SCO) service provides a circuit switched
data service for audio/voice transmission.

— Service Discovery Protocol (SDP) allows for discovery of services on Blue-
tooth enabled devices.

3 An UML Profile for B3G Software Architectures

In previous section, we presented the common networks involved in B3G sce-
narios by eliciting their main properties of interest. In particular, we discussed
their QoS properties and the services they offer to the end-user. As previously
remarked, while designing B3G-oriented application these characteristics should
not be abstracted away by SA descriptions, but rather they should be considered
and analyzed since the early stages of the software life-cycle.

To this extent, in this section, we describe a UML 2.0 Profile for specifying
B3G-oriented SAs which take into account all the discussed properties. In partic-
ular, we exploit the DUALLY approach [I7][I3] by extending it with the features
needed to describe B3G SAs.

A UML 2.0 Profile for Architecting B3G Applications 25

3.1 Background: The DuALLY Profile for Software Architectures

Even though UML is considered a well known standard-de-facto notation for
specifying and modeling software systems, it does not obey the Architectural
Description Languages (ADLs) [20] peculiarities and lacks some relevant aspects.
To this extent, many approaches have been proposed to fill this gap and allow
for SA specification in UML [19][27][18].

Among them, a relevant contribution is provided by DUALLY. DUALLY is a
UML profile which provides a minimal core set of architectural concepts along
with the ability to extend it in order to fit any specific need. Furthermore, the
use of DUALLY allows engineers to carry on different types of analysis (i.e., Model
checking, Testing, Performance, ...) on the defined SA. Figure 2] presents the
DuaLLy profile and describes how the common UML elements [24] have been
extended in order to meet the requirements posed by SA specifications.

SA-Component — UML 2.0 defines a component as “a subtype of Class which
provides for a Component having attributes and operations, and being able to
participate in Associations and Generalizations’. Moreover, “Component may
optionally have an internal structure and own a set of Ports that formalize its
interaction points’. Hence, DUALLY simply maps SA-Components directly into
UML components.

SA-Connectors — UML 2.0 introduces, for the first time, the concept of connec-
tor in UML. In particular, it defines two types of connector: (i) assembly, which
represents a binding between an output port and an input port, and (i) delega-
tion, which binds an external component port with its internal implementation.
However, both the assembly and the delegation connector definitions lack expres-
siveness and do not fulfill the requirements needed to specify an SA according
to [25][T4]. Different solutions have been proposed to fill this gap [18]. DUALLY
represents an SA-Connector by means of a stereotyped UML component which
embodies both functional and non-functional properties of the connectors.

SA-Channels — In UML 2.0: “An assembly connector is a connector between
two components that defines that one component provides the services that an-
other component requires. An assembly connector is a connector that is
defined from a required interface or port to a provided interface or port’. In DU-
ALLY, the SA-Channel stereotype is mapped into the UML assembly connector
(see Figure [2)).

SA-Relationships — While modeling SAs, a key issue is to analyze and keep
trace of the relationships that occur among components [2§][29]. In UML, “a
dependency is a relationship that signifies that a single or a set of model ele-
ments requires other model elements for their specification or implementation.
This means that the complete semantics of the depending elements is either se-
mantically or structurally dependent on the definition of the supplier element(s)”.
Hence, DUALLY implements the SA-Relationship by using the UML Dependency
core element.

26 M. Caporuscio and V. Issarny

== profile ==
Drually

== metaclass == == metaclass == == metaclass == == metaclass ==
Component Aszembly Connector Dependency Package
A A A ? ?
== stereotype == == stereotype == == stereotype == == stereotype == == stereotype ==
SAComponent SAConnector SAChanne! SARelationship B ehavior

Fig. 2. DuaLLy UML Profile

SA-Behavior — In order to carry on SA analysis DUALLY needs some addi-
tional information about the system dynamics by means of components internal
behavior and components interactions. To this extent, DUALLY makes use of the
UML State Machine for modeling components behavior and Sequence Diagrams
for specifying components interactions.

3.2 Extending SA-Channels for B3G

The DUALLY profile described above fulfills the gap between ADLs and UML 2.0
in specifying SAs. However, it does not cope the needs posed by B3G-oriented SA
specification. In fact, notwithstanding the SA-Connector is able to specify com-
plex relationships between SA-Components, it cannot be used to describe net-
works properties (i.e. network type, QoS, security, network services, etc) which
characterize the communication channels in B3G scenarios.

Hence, starting from the SA-Channel defined above, we extend it by creating
a stereotyped class hierarchy, which exploits the characteristics of the different
networks involved in B3G scenarios.

Referring to Figure B an SA-Channel can be specialized into a Local Chan-
nel (CLocal) which refers to local component interactions, or into a Networked
Channel (CNet) which provides remote networked communications. Furthermore,
CNet is specialized into the CN Wired and CN Wireless subtypes which pro-
vide Wired Network Channel and Wireless Network Channel respectively. While
CN Wired is not further specialized, CN Wireless has CNW WWAN, CNW WLAN and
CNW WPAN as subtypes. CNW WWAN defines Wireless Wide Area Networks Chan-
nel, CNW WLAN represent Wireless Local Area Networks Channel and CNW WPAN is
Wireless Personal Area Networks Channel. Finally, while CNW WWAN is specialized
into WWAN GSM, WWAN GPRS and WWAN UMTS which represent a possible set of for-
mal telecommunication networks, CNW WLAN is specialized into WiFi Structured
and WiFi Ad-Hoc which represent two different types of wireless IP network.

A UML 2.0 Profile for Architecting B3G Applications 27

PPP

RFCOMM
CSD / HSCSD sNDCP L2CAP
PDCP
MM LLC HCI
RR RLC RLC LMP
MAC | LAP-DM MAC MAC BASEBAND
Physical | GSMRF GSMRF L1 RADIO
a) LAN/WLAN b) GSM c) GPRS d) UMTS e) Bluetooth

Fig. 3. SAChannel Hierarchy Tree

SAChannel — It represents the root of our hierarchy and provides the Name
attribute which allows us to uniquely identify the instantiated channel within
the SA under definition. It also defines the following naive services :

1. void send(pkt, dest): provides the service for sending a data packet pkt
to a given destination dest.

2. pkt receive(): provides the service for receiving a data packet pkt from
the network.

It is worth noticing that these services might be overridden/overloaded by
the subclasses in order to meet the requirements specified by the different net-
work they implement. For example, given a network specification which defines
a packet-switched data transfer, both send and receive services must be imple-
mented accordingly.

CLocal — CLocal refers to local communication channels used by processes,
tasks and components residing on the same machine. CLocal overrides the ser-
vices defined in SAChannel and defines an additional attribute, named Type,
which indicates the type of communication implemented by the channel: i.e.
pipe, shared memory, etc. ..

CNet — On the other side, CNet refers to remote communication channels
used by components to interact with each other across a network. It extends
SAChannel by defining a minimal set of QoS attributes according to the General
QoS Properties discussed in Section 2.2

CN Wired — This class concerns the communication achieved by using a wired
network (i.e. Ethernet, ATM, USB, ...). It overrides the services defined by its
ancestors and instantiates the QoS attributes.

CN Wireless — This class identifies a communication channel implemented by
means of a wireless link. CN Wireless defines some additional services:

28 M. Caporuscio and V. Issarny

1. ack connect(ID): provides the service for joining the wireless network. It
requires to provide an ID which uniquely identifies the client within the
network.

2. void disconnect (ID): provides the service for disconnecting from the net-
work. The ID is used to clean up the network clients table.

CNW WLAN - This class defines a communication channel implemented by
means of a WLAN. It instantiates the inherited QoS attributes and defines some
additional services:

1. void enableWPA (pwd): enables the WPA service by providing the re-
quired password.

WiFi Structured - Structured WiFi channel instantiates the inherited at-
tributes and define the following service:

— [ID] getSSID (): provides the service for retrieving the SSIDs of the net-
works in range. [ID] represents an array containing all the SSIDs retrieved.

WiFi Ad-Hoc - Operating in ad-hoc mode requires devices within range of
each other to discover and communicate in peer-to-peer fashion without involving
central access points. Hence, the Ad-Hoc WiFi channel instantiates the inherited
attributes and define the following service:

— [ID] peerDiscovery(): provides the service for retrieving the ID of the
peers in range. [ID] represents an array containing all the IDs retrieved.

CNW WWAN - This class identifies a communication channel implemented
by means of a wireless telecommunication network. In particular, it extends
the set of attributes according to the advanced QoS properties discussed in
Section 2] appropriately overrides inherited methods, and provide the following
common services:

— void mobilityManagement (ID): provides the service for managing mo-
bility issues, such as handover and roaming.

— void billing(): provides the service for managing services billing.

— void sendSMS (MSG): provides the service for sending Short Messages.

— MSG getSMS(): provides the service for receiving Short Messages.

WWAN GSM - The GSM Class instantiates all the attributes defined earlier,
overrides inherited methods (i.e., connect, send, ...), and provides the following
services:

— Call getIncomingCall(ID): provides the service for receiving incoming
voice calls.

— Call setOutgoingCall(NUM): provides the service for setting an outgoing
call.

A UML 2.0 Profile for Architecting B3G Applications 29

WWAN GPRS - The GPRS Class does not provide new services but overrides
inherited methods (i.e., connect, send, ...) and instantiates all the attributes
defined earlier according to its specification.

WWAN UMTS - The UMTS Class instantiates all the attributes defined
earlier, overrides inherited methods (i.e., connect, send, ...), and provides the
following services:

— Call getIncomingCall(ID): provides the service for receiving incoming
voice calls.

— Call setOutgoingCall(NUM): provides the service for setting an outgoing
voice call.

— void sendFAX (MSG): provides the service for sending a Fax.

— MSG getFAX (): provides the service for receiving a Fax.

WPAN - WPAN Class identifies a channel implemented by means of a personal
area network. It defines some common services and can be further derived into
more specific classes:

— [ID] peerDiscovery(): provides the service for retrieving the ID of the
peers in range. [ID] represents an array containing all the IDs retrieved.

— Call setVoiceTrasmission(ID): provides the service for managing au-
dio/voice transmission to the device identified by ID.

3.3 Early Example

In this section, We present a simple example which aims to summarize the char-
acteristics introduced above. Figure @] shows an SA composed of a number of
components: an Application is connected through a generic network to the Web
Server that, by using a XParlay connector, is able to interact to different mo-
bile clients (namely GSM Phone, Laptop and UMTS PDA) through WAN networks.
Moreover, while the GPRS Mobile Termination (GPRS MT) acts as network ac-
cess point for the Laptop, the UMTS PDA is directly connected to Application
by means of a PAN channel and to Web Server trough the UMTS network.
Note that, while Web Server accesses the XParlay connector services by us-
ing a CN Wired channel, the wireless clients are linked to it by using different
CNW WWAN channels. Here, the role of the XParlay connector is to make the set
of services implemented within WAN networks (i.e., messaging, presence, local-
ization, phone calls) available to the web server [21].

In this setting, let the UMTS PDA holder want to send an SMS to both the GSM
Phone and the Laptop clients. She can choose if sending the SMS by using the
WWAN facilities (then paying the cost of two SMS) or using her web account
that allows her to send free SMS. In the latter case, she has a further choice: she
can browse the web site by using either the UMTS data transfer service (then
paying the service cost) or a PAN network in order to use the Application
component as router to access Internet and interact to Web Server for free.

30 M. Caporuscio and V. Issarny

<<SAComponents:>
WEB Server

<<SAConnedor== <<VWWAN_GSM= <= SAComponent=>
GMS Phone

=<CN_Wired==

[e] [

<<SAComponents = <<SAComponents:>
GPRS MT Laptop

1

—

=<VWWAN |GPRS>>

—1

<<Clocal>>

<<Cllet=>

<<VWVAN_UMTS==>

2

=<SAComponent>>
Application

<= SAComponent>>
UMTS PDA

CNW_AWAN >

<<\WP AN=>

Fig. 4. B3G early example

Even though this example is really simple and the SA is composed of few
components, it shows the overall complexity inherent to B3G scenarios. Modeling
the same SA by using either ADLs or SA-oriented UML profiles would hide
the main characteristics of this type of networks (i.e., QoS properties) and the
services they provide (e.g, SMS service).

4 B3G Software Architecture Analysis

Asremarked in previous section, SA descriptions allow for analysis and validation
of architectural choices obtaining better software quality and shorter time-to-
market development [6].

Since SA represents the first, in the development life-cycle, complete descrip-
tion of the system under development, carrying on accurate analysis at this
stage would speedup and improve the next life-cycle phases. This is even more
important while developing B3G Applications. In fact, since the complexity of
these systems comes from both the application itself and the underlay networks,
having qualitative and quantitative analysis results allows software engineers to
understand in advance the behavior/misbehavior of the system.

To this extent, the B3G UML profile presented in previous section provides
the ability to perform the following analysis by using UML-based automated
tools: (i) SA Model Checking which allows for checking architectural model con-
sistency, (ii) Performance Analysis of SA which allows for making quantitative
analysis on SAs, and (iii) SA-driven Testing which allows for checking whether
the implementation under test fulfills the architectural specification, and (iv)
Runtime SA-based System Reconfiguration which allows for monitoring and re-
configuring the system at runtime.

A UML 2.0 Profile for Architecting B3G Applications 31

Model Checking Software Architectures — Model-checking is a well known
verification technique which aims to validate system specifications against func-
tional properties of interest expressed by means of formal languages [I1]. The use
of such a technique at the architectural level allows architects to design correct
SAs (i.e., system specifications) that satisfy the functional requirements (i.e.,
properties of interests).

The B3G profile presented in Section [3] exploits the functionalities provided
by DUALLY which in turn is fully integrated into the CHARMY tool [10], a frame-
work for specifying and model-checking SAs. This allows us to model-check B3G
applications by taking into account the networks low-layer properties usually
abstracted by ADLs.

Performance Analysis of SA — Software performance is the process of predict-
ing and evaluating whether a system meet the user performance requirements [4].
Performing such an analysis requires to use modeling languages specifically de-
signed for this purpose - e.g., Queuing Network (QN), Petri Nets (PN), etc.

However, given a UML-based SA specification, it is possible to automatically
generate the relative QN model and carry on the analysis [12]. This, allows us
to automatically transform B3G-oriented SAs into QNs and then carry on a
performance analysis that takes into account also the network QoS properties
discussed in Section

SA-based Testing — While SA model-checking allows for an exhaustive and
automatic analysis of the system model, SA-based testing aims to validate the
implementation conformance to the SA model [7]. In UML-based SA specifica-
tion, SA-based testing uses UML notations such as State Diagrams and Sequence
Diagrams for describing component/connector behavior and test cases respec-
tively [12].

Hence, casting this to the B3G-oriented SA presented above, allows us to
automatically generate test cases that consider also the characteristics of the
involved networks.

Runtime SA-based System Reconfiguration — In deploying complex dis-
tributed software systems, runtime QoS management is an important issue to
address. Self-adaptation, based on on-line monitoring and dynamic reconfigu-
ration, is considered a useful technique to solve it. To this extent, the use of
SA performance analysis, for evaluating the actual system status and choosing
the next system configuration, achieves fine tuned reconfiguration process that
overcomes the observed QoS problems [9].

Thus, using the B3G-oriented UML profile for specifying the SA allows for
evaluating the actual performance and for reconfiguring the system also with
respect to the QoS properties of the underlay networks. Moreover, this also
allows for designing applications able to dynamically negotiate Service Level
Agreements (SLA) according to the connectivity and QoS they perceive, as long
as properties match the requirements.

32 M. Caporuscio and V. Issarny
5 Conclusions and Future Work

B3G technology conceives the convergence of telecommunication networks with
IP based networks for providing enhanced services. This new class of services
exploits the ability to transfer both voice data and non-voice data through dif-
ferent kinds of networks, either wired or wireless. This define a new application
domain where applications can not only interact with each other, but they can
also interact with non-software entities (i.e., humans). This new application do-
main requires for an adaptation/revision of the software life-cycle and the related
tools.

To this extent, we presented our ongoing work on investigating how to address
the designing and developing of B3G-oriented applications. In particular, we
first described the different network involved in B3G scenarios and their main
characteristics. Then, we proposed an extended UML Profile which allows for
defining B3G-oriented SA and for performing different kind of analysis which
aim to validate B3G-oriented applications with respect to both qualitative and
quantitative requirements.

The work discussed herein represents the first step of a long term research.
In fact, we plan to use the proposed B3G-oriented UML profile for design-
ing and evaluating the PLASTIC middleware. PLASTIC is a IST Project [26],
we are involved in, which aims to construct a platform for delivering soft-
ware services deployed over B3G networks. Main characteristics of the PLAS-
TIC Services is that they will be adaptive to the environment with respect
to resource availability and delivered Quality of Service (QoS), via a develop-
ment paradigm based on Service Level Agreements (SLAs) and resource-aware
programming.

References

1. 3rd Generation Partnership Project Technical Specification Group. Digital Cellular
Telecommunications System (Phase 2+) - General Packet Radio Service (GPRS)
Service Description - Services and System Aspects - Stage 2, Jan. 2002.

2. 3rd Generation Partnership Project Technical Specification Group. Universal Mo-
bile Telecommunications System (UMTS) - Services and service capabilities, Sept.
2005.

3. 3rd Generation Partnership Project Technical Specification Group. Universal Mo-
bile Telecommunications System (UMTS) - Universal Mobile Telecommunications
System (UMTS) - Quality of Service (QoS) concept and architecture, June 2005.

4. S. Balsamo, A. Di Marco, P. Inverardi, and M. Simeoni. Model-based performance
prediction in software development: a survey. I[EEE Transactions on Software
Engineering, 30(5):295-310, May 2004.

5. L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice. Addison-
Wesley, Massachusetts, 1998.

6. M. Bernardo and P. Inverardi. Formal Methods for Software Architectures, Tutorial
book on Software Architectures and Formal Methods. SFM-03:SA Lectures, LNCS
2804, 2003.

7.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

A UML 2.0 Profile for Architecting B3G Applications 33

A. Bertolino and P. Inverardi. Architecture-based software testing. In Joint pro-
ceedings of the second international software architecture workshop (ISAW-2) and
international workshop on multiple perspectives in software development (View-
points '96) on SIGSOFT 96 workshops, pages 62-64, New York, NY, USA, 1996.
ACM Press.

. Bluetooth. Bluetooth core specification v2.0. http://www.bluetooth.com.
. M. Caporuscio, A. Di Marco, and P. Inverardi. Model-based system reconfiguration

for dynamic performance management. Journal of Systems and Software, 2006. To
appear.

Charmy Project. Charmy web site. http://www.di.univaq.it/charmy, February
2004.

E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT Press,
2001.

V. Cortellessa, A. D. Marco, P. Inverardi, H. Muccini, and P. Pelliccione. Using uml
for sa-based modeling and analysis. In Proceedings of Int. Workshop on Software
Architecture Description & UML, Lisbon, Portugal, Oct 2004.

D. Di Ruscio, H. Muccini, P. Pelliccione, and A. Pierantonio. Towards weaving soft-
ware architecture models. In Proocedings of the MBD-MOMPES 2006 Workshop,
Potsdam, Germany, March 2006.

D. Garlan and M. Shaw. An introduction to software architecture. In V. Am-
briola and G. Tortora, editors, Advances in Software Engineering and Knowledge
Engineering, pages 1-39, Singapore, 1993. World Scientific Publishing Company.
IEEE 802.11 Working Group. IEEE 802.11 Wireless Local Area Networks (WiF1i).
http://grouper.ieee.org/groups/802/11/.

IEEE 802.3 Working Group. IEEE 802.3 CSMA/CD (ETHERNET) based Local
Area Networks. http://grouper.ieee.org/groups/802/3/.

P. Inverardi, H. Muccini, and P. Pelliccione. DUALLY: Putting in synergy UML 2.0
and ADLs. In Proocedings of Int. 5th Working IEEE/IFIP Conference on Software
Architecture (WICSA), Pittsburgh, November 2005.

J. Ivers, P. Clements, D. Garlan, R. N. B. Schmerl, and J. R. O. Silva. Documenting
component and connector views with uml 2.0. Technical report, Carnegie Mellon,
Software Engineering Institute, Pittsburgh, USA, April 2004.

N. Medvidovic, D. S. Rosenblum, D. F. Redmiles, and J. E. Robbins. Modeling
software architectures in the unified modeling language. ACM Trans. Softw. Eng.
Methodol., 11(1):2-57, 2002.

N. Medvidovic and R. N. Taylor. A classification and comparison framework for
software architecture description languages. IEEE Transaction on Software Engi-
neering, 26(1):70-93, 2000.

A.-J. Moerdijk and L. Klosterman. Opening the Networks with Parlay/OSA: Stan-
dards and Aspects Behind the APIs. IEEE Network, 17(3):58—-64, May-Jun 2003.
M. Mouly and M. Pautet. Current evolution of the GSM systems. Technical report,
IEEE Pers. Commun., 1995.

Network Working Group. The Point-to-Point Protocol (PPP). RFC 1661, July
1994.

Object Management Group OMG. Unified Modeling Lanauge Specification - UML
2.0 Superstructure Specification. OMG Document: formal/05-07-04, Aug 2005.
D. E. Perry and A. L. Wolf. Foundations for the study of software architecture.
SIGSOFT Software Engineering Notes, 17(4):40-52, Oct 1992.

Plastic Consortium. Providing Lightweight and Adaptable Service Technology
for pervasive Information and Communication. http://www.ist-plastic.org/. IST
STREP Project.

34

27

28.

29.

30.

M. Caporuscio and V. Issarny

. S. Roh, K. Kim, and T. Jeon. Architecture modeling language based on uml2.0.
In Proocedings of 11th Asia-Pacific Software Engineering Conference (APSEC’04),
pages 663-669.

M. Vieira and D. Richardson. Analyzing dependencies in large component-based
systems. In Proceedings of the 17th IEEE International Conference on Automated
Software Engineering, pages 241— 244, Edinburgh, UK, September 2002.

M. Vieira and D. Richardson. The role of dependencies in component-based sys-
tems evolution. In IWPSE ’02: Proceedings of the International Workshop on
Principles of Software Evolution, pages 62—65. ACM Press, 2002.

T. Zahariadis and B. Doshi. Applications and services for the B3G /4G era. Wireless
Communications, IEEE, 11(5), Oct 2004.

RTDWD: Real-Time Distributed
Wideband-Delphi for User Stories Estimation

Giovanni Aiello!, Marco Alessi!*2, Massimo Cossentino®, Alfonso Urso?,
and Giuseppe Vella?

! Engisud S.p.A. - Research and Development Lab. - Palermo, Italy
2 Engineering Ingegneria Informatica S.p.A. - Research and Development Lab. -
Palermo, Italy
3 ICAR-CNR Istituto di Calcolo e Reti ad Alte Prestazioni Consiglio Nazionale delle
Ricerche, Palermo, Italy
{giovanni.aiello, marco.alessi, giuseppe.vella}@eng.it
{cossentino, urso}@pa.icar.cnr.it

Abstract. This paper proposes RTDWD (Real-time Distributed
Wideband-Delphi), a real-time collaborative web application for user
stories estimation through the Wideband-Delphi method. RTDWD re-
alizes, in a lightweight way, virtual meetings for a critical phase of the
requirements management in distributed Agile development processes,
such as Distributed eXtreme Programming. The web 2.0-based nature
of RTDWD adds new communication modes to a distributed Agile de-
velopment process, where a close real-time collaboration is needed but
difficult to realize due to the geographic dislocation of team members.
Features of RTDWD allow to take into consideration several scenarios
where mobile devices (i.e. Pocket PCs and Smartphones) well substitute
desktop and laptop computers. We present our experience in order to
point out to the researcher community the usefulness of RTDWD and,
generally, of the lightweight real-time collaboration underlining the need
to introduce new technologies on practices of distributed Agile processes.

1 Introduction

In the last years, the research area on software engineering aimed at Agile
development processes causing great interest both of academic and industrial
companies. Moreover, recently, also the embedded software market seems to be
interested in Agile methodologies, because they propose lightweight development
processes aiming to carry out a logarithmic trend of the requirements change cost
according to the project duration [I].

The evaluation both in academic and industrial areas of Agile methodologies
has shown very good results if applied to small/medium co-localized working
groups. Moreover a common principle of every agile framework is the continu-
ous collaboration and communication among team members and the customer,
preferring face-to-face conversationd]. These considerations help to underline

! Manifesto for Agile Software Development, http://agilemanifesto.org/

N. Guelfi and D. Buchs (Eds.): RISE 2006, LNCS 4401, pp. 35-[50} 2007.
© Springer-Verlag Berlin Heidelberg 2007

36 G. Aiello et al.

the difficulties to apply agile methodologies in contexts where team members
are geographically distributed, and to highlight the need to create tools able to
support agile processes even in distributed contexts. In [2] authors propose prac-
tices and values of DXP, a distributed version of eXtreme Programming (XP).
DXP examines XP practices involved when team members of a software project
are geographically distributed, giving importance to the communication. DXP
assumes as available certain important conditions enabling a reliable commu-
nication among distributed team members; for instance the application sharing
imposes synchronous communication among team members. In fact, in [3] the
synchronous communication is considered as a way to improve the work pro-
cess of distributed teams. DXP also proposes some challenges related to the
communication, highlighting benefits of web technologies in terms of low costs
and close involvement of team members. In [4] the importance of having a close
communication within the team and tools supporting specific Agile practices is
highlighted. Agile methodologies emphasize the direct communication between
customers and developers, so that the percentage of information loss, due to the
lack of long communication chains within the team, is minimal. Consequently
distributed Agile processes emphasize the importance of close communication
and collaboration realizing lightweight techniques for a reliable communication
and distributed collaboration.

Literature presents several works dealing with distributed versions of Agile
development processes (i.e. eXtreme Programming [I]). In [6] several patterns
supporting the distributed eXtreme Programming are proposed. Two of these
patterns (virtual shared location and multiple communication modes) are partic-
ularly important for the communication issue. The virtual shared location pat-
tern deals with the need to use collaboration software in order to asynchronously
post persistent information and ideas shared among distributed team members.
Nevertheless, the virtual shared location pattern does not deal with the real-
time communication, on the contrary with our experience where a real-time
collaboration was necessary in order to realize reliable synchronous communi-
cations between team members and customers for user stories estimation. The
multiple communication modes pattern suggests making available as many com-
munication channels as possible, in order to replace, in the best way possible, the
face-to-face communication and to maintain tacit knowledge, trust and shared
understanding among remote team members.

In this paper we propose RTDWD (Real-time Distributed Wideband-Delphi),
a fully web based tool to effectively perform Wideband-Delphi virtual meet-
ings between team members and the customer, also using mobile devices. As
both customers and developers can participate to an estimation virtual meet-
ing, their direct interaction minimizes the usual information loss in plan-based
development processes, in fact they collaborate in real-time in a work context
(a synchronous virtual shared location related to the user stories estimation
practice is identified and common useful information is shared by each user)
avoiding general misunderstanding. RTDWD realizes also asynchronous collab-
orations because the results of each virtual meeting are stored in a database. The

RTDWD: Real-Time Distributed Wideband-Delphi 37

deployment environment of RTDWD is CONDIVISA, an architecture providing
knowledge sharing among nodes forming a network.

The remaining part of the paper is structured as follows: section [presents
related works in this area, section [describes the context of the user stories
estimation practice in Agile requirements management, section @ introduces the
deployment environment of RTDWD, sectionBldescribes RTDWD and its useful-
ness to perform real-time collaborations for the user stories estimation, section @]
presents the validation of RTDWD within Engisud and a comparison with other
tools, finally section [0 traces some conclusions and future works.

2 Related Works

The literature in software engineering presents various works concerning the
distributed collaboration. CAISE [§] is a valid architecture for the rapid devel-
opment of CSE (Real-time Collaborative Software Engineering) tools but it does
not support web based collaborative systems.

Existing web based tools supporting distributed Agile processes include XPla-
nner [7], VersionOne [§], MILOS [3] and MASE []. XPlanner is a project plan-
ning and tracking tool for eXtreme Programming (XP) teams which provides
asynchronous communications among team members. It is a good management
tool but it does not deal with the real-time collaboration among distributed team
members and provides off-line documentation to the customer. VersionOne is an
Agile software management tool supporting multiple Agile processes. MILOS
and MASE are collaboration and knowledge sharing tools for Agile teams sup-
porting both asynchronous and synchronous (real-time) collaborations. Precisely,
MILOS and MASE realize the real-time collaboration through their integration
with Microsoft NetMeeting. Although the usefulness of Microsoft NetMeeting
for synchronous collaboration, it has been a heavy-solution for us, due to the
necessity of installing stand-alone applications, its operative system dependence,
and its lack of supporting specific Agile practices. Since we have used user stories
for the requirements elicitation phase, we needed a lightweight way to perform
Wideband-Delphi virtual meetings for their estimation.

3 The Estimation Phase in Agile Software Development

Agile methodologies, because of their emphasis on customer satisfaction through
continuous delivery of valuable software, suggest to adopt the user story practice
in order to gather functional requirements from the customer’s point of view [IJ.
Moreover, Agile methodologies assume that the requirement elicitation and anal-
ysis do not take a single time window on the whole development process, but their
iterative nature requires periodic meetings with the customer in order to perform
an incremental gathering of functional requirements and to always be ready for
software requirement changes. This point is of great interest for I'T companies be-
cause it minimizes several misunderstandings caused by inconstant communica-
tions. From this point of view, we share our experience with authors of [9].

38 G. Aiello et al.

Agile Requirements Management phases \

User stories and
Acceptance tests N
elicitation)

User stories
estimation
Iteration planning I

5 -)

Fig.1. Agile requirements management phases

When user stories and acceptance tests are gathered, the former have to be es-
timated from developers through meetings of user stories estimation. Estimates
of user stories are necessary in order to perform reliable iteration plannings. The
process is shown in figure [Il User stories estimation meetings are easily per-
formable when involved team members (i.e. developers and project managers)
and customers are co-localized. The co-localization is very important for these
meetings because a continuous interaction related to technical and management
issues have to be tackled. Nevertheless, when the team members are geographi-
cally distributed, problems concerning the lack of direct and synchronous com-
munication precludes plans, several Agile principles (i.e. Customer On-Site) and
values (i.e. Communication).

We use the Wideband-Delphi method to estimate a set of customer user
stories. This method, as described in [I0], is widely used because it repre-
sents a good chance for a close exchange of ideas between developers and the
customer.

Agile methodologies, for user stories estimation, use the ideal time concept
referring to a full devotion of a programmer to the code development during
working hours. The unit of effort is the story point. The development team and
project managers have to agree on the story point meaning taking into consid-
eration a common unit of measure. For instance, an ideal day for an archetypal
senior programmer defined specifically for the project, or an ideal week can repre-
sent a single story point. We preferred the former because a senior programmer
has a large experience, she/he can debate the estimates with an high level of
sureness and, therefore, she/he avoids problems to add calendar days from two
or more developers with different levels of proficiency. In our case, the senior
programmer is a project manager.

It is a good practice to provide ranges of estimation through two estimates
covering different levels of proficiency for each user story. We consider 50% and
90% levels of confidence in respect to the total confidence estimate.

RTDWD: Real-Time Distributed Wideband-Delphi 39

3.1 The Wideband-Delphi Method for User Stories Estimation

The Wideband-Delphi method, as described in [I0], is an iterative and collabo-
rative process that a team uses to estimate the effort that will be spent to realize
a set of customer user stories. Generally, actors involved in a Wideband-Delphi
meeting are developers, project managers and customers. Few days before the
beginning of the meeting, project managers provide, to involved developers, user
stories which will be estimated so that they can think about them. Therefore,
estimators can be both developers and project managers. The participation of
the customer is very useful because she/he can directly interact with develop-
ers and share opinions concerning user stories. In a Wideband-Delphi meeting
a moderator (generally a project manager) manages the order of user stories to
be estimated based on their coherence. When the meeting starts, each estima-
tor reads the user story and, in private, provides her/his 50% and 90% levels
of confidence estimates in story points (iteration 1). When all estimators are
ready, they publish their estimates. Initially, the estimates will be divergent,
therefore the estimators will debate on the reasons of their estimates. It repre-
sents a good chance for knowledge sharing among several team members and
to clear up misunderstandings, involving also the customer. After the group has
discussed the story the moderator asks everyone to estimate it again, keeping
into consideration old estimates (iteration 2). The estimators erase their old es-
timates and write new ones on their cards. When all estimators are ready, the
estimates are published again. In many cases the estimates will already con-
verge by the second round, otherwise high and low estimators will explain the
thinking behind their estimates. Iterations go on until estimate will converge,
obtaining the final 50% and 90% levels of confidence estimates. The process is
repeated for the following user story until all user stories for the iteration are
estimated.

Therefore, the Wideband-Delphi method requires the close communication
among all involved actors, making it very difficult when the development team
is geographically distributed. For this reason, a specific tool to perform syn-
chronous communications in a real-time virtual shared location for user stories
estimation is needed. Tools cited in section [Il do not realize this specific vir-
tual shared location. These reasons have provided us with motivations to create
RTDWD.

4 CONDIVISA: The Deployment Environment of
RTDWD

In this section we show CONDIVISA, a deployment environment of real-time col-
laborative web applications (i.e. RTDWD). CONDIVISA (Collaborative Object
shariNg on Distributed enVIronments based on SOAP and Ajax) is an architec-
ture enabling the sharing of information, represented by XML documents, among
several agents. In the CONDIVISA architecture two main agents are identified:

40 G. Aiello et al.

CONDIVISA node Web services interaction

Knowledge
exchange

- >
Notifications

a2
Qo
\

Shared UML
8¢ Diagrammer

Mobile
Ve

Internet network

7)
\ Web User ()) \
\ 1 —
Qx/ Ajax interaction
\~ - Real-time collaborative
Web-tser (Web user (s) web application data
exchange

Fig. 2. CONDIVISA architecture according to SOA and Ajax interactions

1. CONDIVISA node: it publishes services represented by real-time collabora-
tive web applications (i.e. RTDWD) and plays the role of servent with other
CONDIVISA nodes. For this reason, a CONDIVISA node is both a web
server for any web user participating to a virtual meeting and a component
of a peer-to-peer network, called CONDIVISA network.

2. Web user: It is represented by a desktop/laptop computer or mobile device
running a web browser (i.e. Microsoft Internet Explorer and Mozilla Firefox).
It communicates with a CONDIVISA node deploying the real-time collabo-
rative web application (i.e. RTDWD) which represents a shared repository
for any web user connected.

CONDIVISA nodes exchange SOAP messages with attachmentsd containing
XML documents related to the current state of a virtual meeting and several data
of common interest for CONDIVISA nodes. For this reason, the communication
among CONDIVISA nodes is performed by web services interactions. Precisely,
the notification patterrﬁ is used so that an information update in a CONDIVISA
node is immediately notified and shared with the remaining nodes without a spe-
cific request from closest nodes, minimizing the network traffic (the network traffic
is generated when updates have to be sent and shared among CONDIVISA nodes).

The interaction between a web user and a CONDIVISA node is performed
using the Ajax web technologyE7 so that rich client applications are available to

2 W3C SOAP protocol specification, http://www.w3.org/TR,/soap/

3 Technical works about Web Services Notification (WSN) have been provided by the
OASIS technical committee, http://www.oasis-open.org/committees/wsn/

4 W3C XMLHttpRequest object specification, http://www.w3.org/TR/XMLHttp
Request

RTDWD: Real-Time Distributed Wideband-Delphi 41

each web user, providing very similar functional features to stand-alone applica-
tions, but using http as application protocol and a simple web browser.

The CONDIVISA architecture, shown in figure Bl is a Service Oriented Ar-
chitecture [I2]. In a CONDIVISA network, the interest level of a node related
to information available on the network identifies two data types:

— Common interest data: information shared by all CONDIVISA nodes.
— Partial interest data: information shared by a subset of all CONDIVISA
nodes.

The CONDIVISA network topology is performed using the Distributed Net-
work Knowledge (DNK) Heuristic [I3]. DNK is a lightweight (low computational
cost) Heuristic for a simple and robust knowledge distribution among several
computers. At this level, the knowledge represents both information concerning a
piece of network topology and information made available from each node. All in-
formation related to the network topology is represented by all knowledge spikes
in the network. Each CONDIVISA node holds several knowledge spikes repre-
senting its closest nodes. An effective distribution of knowledge spikes among
CONDIVISA nodes, performed by the DNK Heuristic, assures the connection
of the network graph and an implicit full knowledge to each CONDIVISA node.
Therefore, a CONDIVISA node directly communicates with its knowledge spikes
through notifications of XML documents concerning both common interest data
and partial interest data.

In figure 2] a scenario where nodes A-D-F and B-E have common interests
respectively related to two real-time collaborative web applications (RTDWD
and Shared UML Diagrammer). If the web user j performs an interaction with
the shared Wideband-Delphi environment, several XML documents are notified
from the CONDIVISA node A to D and F through the DNK network. Note that
the mobile web user ¢ will receive XML documents from the same CONDIVISA
node, through Ajax interactions. The notification to nodes D and F involves
the synchronization of the environment state visible to web users k, s ,t and
mobile web user w. Communication types both among CONDIVISA nodes and
web user-CONDIVISA node are based on XML document exchange using http,
and two levels of knowledge sharing are identified: intra-CONDIVISA node and
inter-CONDIVISA node sharing levels. The former deals with the sharing of
XML documents related to deployed real-time collaborative web applications,
the latter deals with the sharing of common interest data and partial interest
data. An example of common interest data is the list of real-time collaborative
web applications available in the CONDIVISA network. The list contains all
knowledge fragment of CONDIVISA nodes but it is shared by all. Consequently,
a web user communicating with a CONDIVISA node may have access to all
public information.

Each real-time collaborative web application realizes a virtual shared location
for all participant to a virtual meeting through the sharing of XML documents
that contain information related to the current environment state (e.g. the shared
web page) and objects within the environment (e.g. user stories).

42 G. Aiello et al.

5 RTDWD: A Tool for Distributed Wideband-Delphi
Virtual Meetings

As described in section[3] the user stories estimation phase is performed for each
iteration because it provides estimates to be considered during iteration and
release plannings. Nevertheless, Agile methodologies assume as normal require-
ments changes, also related to user stories of the current iteration, involving the
need to perform multiple Wideband-Delphi meetings to estimate user stories.
Therefore, requirements changes make unpredictable the number of estimation
phases within a single iteration. When Agile team members are geographically
distributed, the need to perform unpredictable lightweight virtual meetings for
user stories estimation become a critical issue. The lightness of virtual meetings
is very important because the fully web based solution allows each web user to
always be ready to participate to the virtual meeting.

Real-time Distributed Wideband-Delphi (RTDWD) has been integrated with
our Agile project management tool, called eXtreme Project Manager [11], which
supports the Agile development process shown in section [l RTDWD is a real-
time collaborative web application realizing distributed Wideband-Delphi virtual
meetings for user stories estimation, realizing a Real-time virtual shared loca-
tion, and satisfying requirements related to the distributed communication [2].
Although RTDWD was tested for our Agile development process, it can easily
be used in any distributed Agile development process, such as in [9], using the
user stories estimation practice. RTDWD is not bound to the CONDIVISA ar-
chitecture because it is an independent real-time collaborative web application
performing XML documents sharing among several web users. XML documents
describe the current state of the shared Wideband-Delphi virtual location so
that the sharing, through Ajax interactions, assures a continuous synchroniza-
tion of the environment state. Ajax refers to a set of techniques which rely on
a layer added between browser and server. Instead of submitting a full page of
data to the server, receiving a full page back, an application which uses Ajax
techniques can send an individual field value and receive information to update
only a single portion of the page. Ajax engine relies its power on JavaScript
and CSS, but mainly on Document Object Model (DOM) and XML HttpRequest
object. DOM enables to modify the user interface on the fly, effectively re-
drawing parts of the page, while XMLHttpRequest object allows to perform
asynchronous requests to the server and manipulate responses as a background
activity.

RTDWD, due to its web based features, can be used from mobile devices
(i.e. Pocket PCs and Smartphones) running a web browser. This feature is very
useful when some potential participant to the virtual meeting, such as the cus-
tomer, cannot use a desktop or laptop computer. RTDWD realizes a virtual
close communication between geographically distributed team members (i.e. de-
velopers and project managers) and the customer, in order to provide reliable
estimates to customer user stories to be developed in the current iteration.

In order to perform Distributed Wideband-Delphi virtual meetings, RTDWD
recognizes the following user types:

RTDWD: Real-Time Distributed Wideband-Delphi 43

— Moderator: The moderator holds full ownership to move user stories within
the environment, to confirm final estimates and initialize the estimation
phase of a customer user story. These features represent the external state
of user stories. The initialization of the estimation phase of a customer user
story will create a shared dynamic table where estimators and generic users
can interact in real time. Generally, the moderator does not estimate cus-
tomer user stories, because she/he is represented by a project manager.

— FEstimator: The estimator takes part to the iterative estimation phase of a
user story in order to perform a real planning for the implementation of
the selected customer user story. The estimator can see, in real time, the
user story movement within the environment performed by a moderator
and she/he can interact both with user stories and a dynamic table where
she/he can insert her/his own min and max estimates (in story points) for
the current iteration. Moreover, she/he can see estimates published by other
estimators in real time. The estimators are, generally, the developers that
will have the responsibility to realize customer user stories.

— Generic user: A generic user is, for instance, a customer. Customers can eas-
ily take part in the Wideband-Delphi session from any geographic location,
in a non-invasive way. This user type cannot move on the shared user stories
within the environment for order reasons. On the contrary she/he will see
actions performed by other user types within the environment at real-time.
If a participant associated with this user type wants to communicate with
other participants, a chat room with all connected users is available.

RTDWD service is linked to a database containing all defined accounts for each
Agile project in progress. As above mentioned, according to a specific account
entered during the login phase, RTDWD recognizes the user type and projects
where she/he works. Of course, any account can be assigned to multiple projects.
The user type establishes the interaction policy that a single participant has on
shared objects (e.g. user stories). The logged user can choose the room related to
the project in which a Wideband-Delphi session is needed, as shown in figure Bl
Figure Bl shows both the desktop/laptop computer and mobile device versions.
Figure and figure show a shared Wideband-Delphi-session web page
with customer user stories to be estimated, respectively for desktop/laptop com-
puter and mobile device. Ajax capabilities allow to manage, on the client side,
shared XML documents in order to update, “on the fly”, the local shared web
page. According to the user type, it is possible to change or not the external state
of the single user story. If the user type is moderator she/he can drag and drop a
user story wherever she/he wants within the environment, causing the real-time
information propagation, through the notification of XML documents, to others
participants which can instantaneously see the state change. Of course, multiple
moderators can join a single Real-time Wideband-Delphi session, so they will
have full ownership of external user stories states. All user types hold the inter-
nal state of user stories, so that each participant is owner of her/his local objects,
and therefore can explode or collapse internal information sections such as user
story description area, tasks area, estimates area (see ﬁgure. Furthermore,

44 G. Aiello et al.

A Wideband Delphi session login - Micrasoft Internet Explorer

X

[

Fle Modfica isualizza Prefeniti Strumenti 7

Tndirizzo [€] http:}7192.168.0.70:3080/R TOWD/login. bt v Bva % 2

Real Time Distributed Wideband-Delphi Virtual meeting\
A Callaborative web object sharing for user stories estimation W —
i

Ajux Web

‘ou are the “Moderator” of the Widehad Delphi session. Please, make sure that the RTD'WD engine is
ing. Than, select the related project so you want start the session...Start the RTDWD service.

ID | Project Name Customer
1 ITEA-Agile. SME 1
2 ERP-Light SME 2
3| DISCORSO SME 1
[mfproject name _ Jeustomer T]
T —
T — I —
= |~
E] T

Fig. 3. The logged user can choose the room related to an assigned project

each participant can export messages exchanged in XML format which can be
used as documentation support, according to the Agile methodologies princi-
ples. RTDWD has been developed considering the situation in which Real-time
Wideband-Delphi sessions related to different Agile projects run simultaneously.
Each RTDWD node implements all software packages shown in figure Bl The
Security manager package manages the user login phase through filtering and
dispatching of ajax requests to session manager, communication manager and
sharing manager packages. The Session manager realizes the multi-session capa-
bility allowing to simultaneously execute multiple wideband-delphi virtual meet-
ings related to different Agile projects. The Communication manager package
implements the data access policy based on the user type and communicates
with the Sharing manager package that manages XML documents related to
the shared wideband-delphi environment. The Wideband-Delphi manager is the
core package of RTDWD because it implements the business logic needed for
the user stories estimation phase and provides XML documents shared by web
users. The data storage and interactions with the database is accomplished by
the Data persistence manager package performing the persistence of user stories
estimates .

RTDWD can be distributed on multiple CONDIVISA nodes, related to
projects of each company branch. Moreover, a single web user can join multiple
Real-time Wideband-Delphi virtual meetings published on different CONDIVISA
nodes. Figure Bl shows that exchanged documents are XML based and the direc-
tion is full duplex for moderator and estimator and half-duplex (from server to
client) for generic users. Server side packages are J2EE based and provide, for each
session, the storing and the management of the XML documents exchange.

As described in section ., when a moderator begins an estimation phase
of a user story, the wideband delphi process starts. For each iteration each

RTDWD: Real-Time Distributed Wideband-Delphi 45

Delphi Yirtualmeeting - Microsoft Internet Explorer

File Modifica Visualizza Preferiti Strumenti 7

Indizzo @ http:/[192. 168.0. 70:8080/R TOWDjmain. htm v| B vai & -
@
Ajgm Real Time Distributed Wideband-Delphi Virtual meeti

A Collaborative web object sharing for user stories estimation

You are logged a

[Bll«———— Status Icon

e W

User stories to estimate(5) ‘

Estimated user stories{1) ‘

] Realize a shared service which
(- | lseveral involved paopla

i d to xp ject
Bt amd o setof - | 4——— Draggable User story
lestimators can perform a Real-|
ltime Wideband Delphi session

Note 1=The session must be
lusable through a vreb brovwser
Note Realize a "Rich™

lication
Eﬂeﬁnmi tashs:

7 Task 4 509 estimate3 | s.p. |
B Lo estmasd |
o] Task 3

to partecipace to
the Real-tine o4
Start the estimation phase for

50% estimate___ | s.p. W this user story

T 50% estimate. | s.p. (Visible to the moderator only)
Status:
(*)<.p.=Story points

JESATE o Connecied users:
User: maderl moder] (M)
a Project: ITEA-Agile 2 estiml (E)
Type: Moderator estim? (E)
- & estim}
Srail ® ,
E Y]
ot messages

a5 HML

£3

Internet Explorer

http:/f192,168.0,70:8080/RTOWDY ~| @

TFTTD Real-time Widshand-Delphi
i Wirtual meeting.

user story will our message:

dapy take 2ot of
moder1 S

n Sodo I

-
-

estiml i Iﬂ
Mot estimated Estimating... Estimated |a

D:1 =1
ao:4 g
o:5 g
ID:6& i

il

wisual, strum. 1 €] 3 <7 El‘
(b)

Fig.4. A Real-time Wideband-Delphi virtual meeting for a) a moderator and b) a
mobile estimator

46 G. Aiello et al.

Session
- manager |~
2 S

’ —] —
Security ‘ Ci icati l ‘[i
manager | manager |] manager

XML document
oooooo exchange (Ajax)
exchange (Ajax)-

Moderalor 1
Updates external s(ate <
S

Estimator
(Provides esumates >

?
™
XML document /q? %
exchange (Ajlx) /& O
5 B S %
XML document u\\\ Es ""a""/ S N
exchango (Ajax) %\
KN

/gJ/ XML document
Estimator N /§ exchan, nge (Ajax)

Web user

XML document
exchange (Ajax)

Web user XML document

Web user

Fig. 5. RTDWD architecture, communication model and server side software packages

estimator provides her/his estimates (50% and 90% levels of confidence esti-
mates) debating her/his reasons with other estimators. If estimates conflict, the
moderator will start the next iteration and each estimator provides estimates
again, keeping in mind the debate of the previous iteration. The moderator co-
ordinates the several iterations and confirms final estimates when estimators
ideas converge. When a moderator starts the estimation phase of a user story
using RTDWD, all participants will see a red title background of the user story.
RTDWD supports iterative estimation phases putting a shared dynamic table
at the participants’ disposal. The dynamic table shows all estimation status of
user stories and all estimates provided by estimators during the whole real-time
Wideband-Delphi session. The dynamic table is built by the Wideband-Delphi
Manager software package. For each user type an interaction level with the table
exists:

— Moderator: The moderator sees the dynamic table containing all estimates
submitted by estimators in previous and current iterations. The dynamic
table is automatically updated when an estimator submits estimates. This
feature is provided through Ajax interactions. The dynamic table is non-
invasive within the page because any user can drag, drop and close it when-
ever she/he wants.

— Estimator: The estimator provides her/his estimates for each iteration.
She/he can interact with the dynamic table and insert her/his estimate
only in the row related to her/him. The Wideband-Delphi manager package,
shown in figure Bl recognizes connected users (interacting with the session
manager) package, and builds the dynamic table.

RTDWD: Real-Time Distributed Wideband-Delphi 47

2 Wideband-Delphi Yirtual meeting - Microsoft Internet Explorer

© Fle Modfica Visuslizza Preferiti Strumenti 7

 Indizeo €] hitpf192,168.0,70;8080/RTDWD{main,him B @
@
Ajgm Real Time Distributed Wideband-Delphi Virtual me

& Collaborative web object sharing for user stories estimation

[
Use™ " gtory @ Estimator 50% est. 9o% est. State 7 ‘
) 5_none z 5 Estimated
2_1 E o Estimated
6_none Not estimated
B 4_none Not estimated
E 1_none Not estimated
ul 22 Estimating e i
o estim1 5 4 (35| time Wideband Delphi session
al astim2 none none

Note 1=The session mustbe
estim2 none none

E ner 1 Last iteration
E astimi 4 6
i estimz 2 3
B estimg 1 =
o]

Last iteration
53

ID:6 Splitinone

itle:New project definition

s estimsed——— | 5.

status: Estimating...
*)z.p.=Stary paints

T e G v
8 noder1 an
estiml (E)
g esting ()
- timid ()
e Send L=
gr=2 I)

[E3

Fig. 6. Iterative estimation phase of a customer user story

— Generic user: The generic user (e.g. a customer) can see all submitted es-
timates by estimators. She/he cannot insert estimates in the table because
she/he is not an estimator. The generic user can interact with estimators in
order to participate to the estimation phase and debate the estimates.

Figure Bl shows the dynamic table of estim1 estimator using a desktop/laptop
computer; she/he can a)insert her/his own estimates, b)see others estimates of
both current and previous iterations and c¢)know the status of estimation of user
stories. In the same way, figure [refers to the participation of estim3 estimator
using her/his mobile device. During the virtual Wideband-Delphi all partici-
pants share various XML documents containing information related to the cur-
rent state of both the virtual shared location and the Wideband Delphi session.
Figure [shows a fragment of the shared XML document containing current es-
timates related to the figure[ll When estimates for a single user story converge,
the moderator will close the estimation phase of the selected user story and the
dynamic table will be automatically updated with final estimates. This process
goes on until all customer user stories of the iteration have been estimated. The
logout of the moderator will cause the storing of all estimates in the database of
the CONDIVISA node. Furthermore, RTDWD provides documentation through

48 G. Aiello et al.

<2xml version="1.0" encoding="UTF-8"?>
<WDSession>
<user_story id="1_none" status="Not_estimated" />

<user_story id="2_2" status="Estimating" current_iteration="3">
<current_estimates>
#4f |Internet Explorer 43 . <<ez‘;'n“:‘a°‘;isd:"es'""1">

<min_estimate>2</min_estimate>
hittp:/{192.168.0.70:8080/RTDWDY ~| & < Max_estimatesa</max.esimate>

< festimates>
WITITD Real-time Wideband-Delphi </estimator>
i Wirtual mesting,

</current_estimates>
<last_estimates>
urrent iteration: number 3 <iteration number="1">

= = = < estimator id="estim1">
[Estimator |[50% 20 < estimates>
estiml 3 * < min_estimate>3</min_estimate>
< max_estimate>5</max_estimate>
estim2 none none < lestimates>
< /estimator>

]

[estimz none none

) </iteration>
(Your estimates: <iteration number="2">

'50%% estimate 90% estimate

] < iteration>
</last_estimates>
s = </user_story>
Jfpratus: o be sent. = <user_story id="2_1" status="Estimated">

<final_estimates>

Cumently, estimates of selected user story are: <min_estimate>4</min_estimate>
<max_estimate>6</max_estimate>

</final_estimates>

417

504 estimate= -- story points
i -- story noints </user_story>

0%
visual, stum, @ ¥ @} <% (=18 Ziisorid="estim1" type="estimator" /=

</WDSessiorn>

Fig. 7. Iterative estimation phase Fig.8. Shared XML document containing cur-
of a customer user story using a rent estimates
mobile device

asynchronous storing, in XML format, of messages exchanged during the virtual
meeting. This way, RTDWD also tracks reasons related to user stories estimates.

6 Tool Validation

We have validated the RTDWD tool on the ITEA-AGILE project [14], dur-
ing the Agile assessment within Engisud that usually outsources its projects to
three geographically distributed development laboratories. The assessment has
carried out an Agile development process, shown in figure[d The comparison of
RTDWD with tools described in section [2lis shown in table [l XPlanner is full
web based but it does not support the synchronous communication. CAISE tools
support both synchronous and asynchronous communications but they are not
web based. MILOS and MASE, although support the synchronous communica-
tion, depend on a stand-alone application that makes them platform dependent
and not full web based. RTDWD is full web based, realizing both synchronous
and asynchronous communications. For this reason, RTDWD have provided reli-
able user stories estimations because team members and the customer have syn-
chronously communicated also when they were geographically dislocated. During
our trials RTDWD has shown to be a concrete approach for distributed Agile
development processes considerably reducing travel costs and times needed to
reach a collective sharing of ideas among several team members and customers.
Finally, RTDWD has provided a support to a critical phase of the Agile require-
ments management keeping simple for the customer to actively take part in the
real-time Wideband-Delphi virtual location, using any web enabled device.

RTDWD: Real-Time Distributed Wideband-Delphi 49

Development and Agile Requirements
[

testing management
/ User stories elicitation session
) -User stories definition
é T , -Acceptance tests

definition

Refactoring and
— ¢ L — \‘
T
ial
181 S—
~ =
sencopmen
Product Development El

User stories estimation
A

FIN

Iteration planning : Release planning

User stories
assignment

e

Responsibilities
assignment,

&

Deyelager

Fig. 9. Agile development process related to the Agile assessment in Engisud

Table 1. Comparison of RTDWD with other collaborative tools

Tool Communication Users Deployment Supported Synchronization
type interaction practices support
CAISE tools synch./asynch. text/voice stand-alone generic -
XPlanner asynchronous text web-based XP phases -
VersionOne asynchronous text web-based several Agile methods -

MILOS synch./asynch. text/voice web-based several Agile methods stand-alone
(MS NetMeeting)

MASE synch./asynch. text/voice web-based several Agile methods stand-alone
(MS NetMeeting)

RTDWD synch./asynch. text web-based user stories estimation web-based
(Ajax technology)

RTDWD can be adopted independently of its deployment environment due
to its versatility, therefore it can support any tool for distributed Agile project
management adding a reliable synchronous communication way for a specific Ag-
ile practice. RTDWD well meets the DXP assumptions related to the distributed
communication, the importance of the reliable distributed collaboration and the
availability of tools supporting specific Agile practices.

7 Conclusions and Future Work

In this paper we have proposed RTDWD, a real-time collaborative web application
realizing Wideband-Delphi virtual meetings for the Agile requirements manage-
ment in a distributed environment. We have used RTDWD in our Agile devel-
opment process providing a suitable communication mode among geographically
distributed team members and customers for user stories estimation. Results of

50

G. Aiello et al.

RTDWD motivates us to continue our research in real time collaborative environ-
ments for distributed Agile development processes. RTDWD will be extended to
the face-to-face communication improving human interaction through vocal and
visual supports. RTDWD is part of a real-time collaborative tool suite which aims
to effectively support all critical phases of a distributed Agile development pro-
cess related to synchronous and asynchronous communications. All results will en-
hance the CONDIVISA architecture in order to take advantage from lightweight
real-time collaborative supports.

References
1. Kent Beck: Extreme programming explained. Addison-Wesley (2000).
2. Michael Kicher, Prashant Jain, Angelo Corsaro, David Levine: Distributed eXtreme

®

10.

11.

12.

13.

14.
15.

Programming. XP International Conference (2001).
Frank Maurer: Supporting Distributed Extreme Programming. Proceedings of
XP/Agile Universe Lecture Notes in Computer Science 2418 (2002).

. Thomas Chau, Frank Maurer: Knowledge Sharing in Agile Software Teams. Logic

versus Approximation (2004) 173-183.

Carl Cook, Neville Churcher: Constructing Real-Time Collaborative Software En-
gineering Tools Using CAISE, an Architecture for Supporting Tool Development.
Twenty-Ninth Australasian Computer Science Conference 48 (2006) 267-276.
Keith Braithwaite, Tim Joyce: XP Expanded: Extreme Programming and Agile
Procesees in Software Engineering. XP International Conference (2005).
XPlanner software, http://www.extremeplanner.org

VersionOne software, http://www.versionone.net/

Paul Prior, Frank Keenan: Requirements Management in a Distributed Agile En-
vironment. Transaction on engineering, computing and technology 4, (2005).
Mike Cohn: User Stories Applied - For Agile Software Development. Addison Wes-
ley (2004).

Engisud: eXtreme Project Manager: a tool for Agile project management. Internal
document for the ITEA-Agile project (2006).

Randall Perrey, Mark Lycett: Service-Oriented Architecture. Proceedings of the
Symposium on Applications and the Internet Workshops (SAINT’03) (2003).
Engisud: DNK Heuristic for a lightweight knowledge distribution on P2P computer
networks. Internal document for the ITEA-Agile project (2006).

ITEA-AGILE project web site. http://agile-itea.org

Engisud: An Agile development process for Engisud. Internal document for the
ITEA-Agile project (2006).

Trust Strategies and Policies in Complex
Socio-technical Safety-Critical Domains: An
Analysis of the Air Traffic Management Domain

Massimo Felici

School of Informatics, The University of Edinburgh
Edinburgh EH9 3JZ, UK
mfelici@inf.ed.ac.uk
http://homepages.inf.ed.ac.uk/mfelici/

Abstract. The future development of Air Traffic Management (ATM),
set by the ATM 2000+ Strategy, involves a structural revision of ATM
processes, a new ATM concept and a system approach for the ATM net-
work. This requires ATM services to go through significant structural,
operational and cultural changes that will contribute towards the ATM
2000+ Strategy. Moreover, from a technology viewpoint, future ATM ser-
vices will employ new systems forming the emergent ATM architecture
underlying and supporting the European Commission’s Single European
Sky Initiative. Introducing safety relevant systems in ATM contexts re-
quires us to understand the risk involved in order to mitigate the impact
of possible failures. This paper is concerned with trust in technology.
Technology innovation supports further (e.g., safety or performance) im-
provements, although there is often a lack of trust in changes. This paper
argues that organizations need to identify trust strategies and policies
supporting the delivery of technology innovation. Moreover, the identi-
fication of trust strategies and policies supports the understanding of
subtle interactions between diverse, often competing, system objectives.

1 Introduction

Computer systems support diverse human activities (e.g., monitoring, decision
making, etc.). The introduction of new computer systems, or the upgrade of
existing ones, in any environment often modifies work practice. For instance,
system operators often need to adjust their procedures around new systems.
Moreover, systems may act as a means of communication/mediation between
human beings. Complex interactions [I7] emerge as results of changes (e.g., en-
vironmental changes, new computer systems, adjusted work practices, etc.). The
introduction of new technology often requires the re-negotiation of social organi-
zations (e.g., responsibility and accountability) as well as overall system features
(e.g., safety). Change gives rise to uncertainties with respect to computer sys-
tems. For instance, in the Air Traffic Management (ATM) domain, air traffic
controllers often react to system changes or failures by managing less traffic in
their air spaces. Uncertainties require of us an extent of trust (e.g., with respect

N. Guelfi and D. Buchs (Eds.): RISE 2006, LNCS 4401, pp. 512007.
© Springer-Verlag Berlin Heidelberg 2007

52 M. Felici

to computer systems). Unfortunately, changes often trigger mistrust. Norman,
for instance, reports how the introduction of questioning between pilots in work
practice, initially, triggered a lack of trust in the commercial aviation community
[46]. However, the new practice, eventually, produced increased safet. Simi-
larly, empirical studies point out the relationship between trust in automation
and effectiveness of human intervention in continuous process control [43]. Hu-
man Reliability Analysis (HRA) highlights how the “human component” affects
the overall performance and reliability of heterogeneous systems [29].

Technology involves an extent of risk [50], regardless our knowledge or trust
in it. Any time we use or rely on technologies we take risks. Understanding trust
is very important in presence of uncertainties with respect to computer systems
and, generally speaking, socio-technical systems. On the one hand technology
supports human activities. On the other hand it is a source of harm. Engineer-
ing safety-critical systems involves risk analysis [34/55] as part of safety analysis
in order to identify safety requirements, although assessing the benefits of tech-
nology exposes the limits of pure technical arguments [25]. Whatever is the risk
associated with technology, social aspects constrain risk perception - “Accept-
able risk is a matter of judgement” [10]. However, social and cultural aspects
affect judgement [10]. For instance, MacKenzie analyzes how social connectivi-
ties affect global financial markets [37]. In particular, the study highlights how,
even, electronic mediated trading relies on trust between traders communicating
by computers [37]. This further points out contingencies between cooperation
(competition) [44] and emergent trust (mistrust).

This paper analyzes trust in the context of Air Traffic Management (ATM).
The future development of ATM, set by the ATM 2000+ Strategy [13], involves
a structural revision of ATM processes, a new ATM concept and a systems
approach for the ATM network. Despite the overall objectives [13], emerging
lack of trust may undermine any improvement in the aviation domain (e.g.,
increased safety and performance). Ongoing research (see, Section 2) is debating
and addressing the notion of trust: What is trust? How to model trust? Section 2
acknowledges that it is important to understand trust. But, it argues, too, that it
is important to investigate trust dynamics. Trust strategies and policies should
capture how socially constructed risk and knowledge (e.g., system reliability)
interact each other. This paper stresses trust strategies (in terms of game theory)
and trust policies for the investigation of interaction between trust, risk and
knowledge. This paper is structured as follows. Section 2 reviews models of trust.
Section 3 highlights the current developments in ATM. Section 4 introduces trust
games and elaborates the motivations for trust strategies and policies in ATM.

1 “Obviously, getting this process in place was difficult, for it involved major changes in
the culture, especially when one pilot was junior. After all, when one person questions
another’s behavior, it implies a lack of trust; and when two people are supposed to
work together, especially when one is superior to the other, trust is essential. It took
a while before the aviation community learned to take the questioning as a mark of
respect, rather than a lack of trust, and for senior pilots to insist that junior ones
question all of their actions. The result has been increased safety”, p. 145, [46].

Trust Strategies and Policies 53

Trust games capture processes of negotiating, may be competing, over different
objectives (e.g., increased safety or performance) limiting phenomena of risk
homeostasis (e.g., increased system reliability or safety may imply a decreased
risk perception favoring risk-taking strategies or behaviors) [29J30] - Is trust in
technology appropriate to the risk? Section 5, finally, draws some conclusions.

2 On Trust

Modelling has steadily acquired an important role in presence of uncertainty
of software-intensive systems [35]. On the one hand, modelling addresses un-
certainty of software-intensive systems. On the other hand, it is necessary to
contextualize the trust in modelling, that is, acquire trust in models in context.
This section reviews diverse models of trust. The diverse models highlight an
ongoing debate on the nature of trust. This points out the complexity of trust.
Although it is unfeasible, and may be unnecessary, to take a definitive model
of trust, models further support the understanding of underlying mechanisms
of trust. McKnight and Cherwany propose a typology of trust [39]. The typol-
ogy consists of six trust constructs: Situational Decision to Trust, Dispositional
Trust, System Trust, Trusting Beliefs, Trusting Intention and Trusting Behavior.
Later, McKnight and Cherbany [41] extend the typology of trust to the notion
of distrust, as opposed to trust. Although the typology addresses the lack of an
unified trust definition, it provides limited support to understand the dynamics
of trust formation [42].

The shortcomings of security mechanisms [2] have motivated the increasing
interest for the formalization of trust in global computing scenarios [6]. Recent
research [6/45] proposes formal models that capture to some extent the typology
of trust [39]. Trust constructs, therefore, allow believes to emerge [39]. Other for-
mal models [TI59] exploit the trust constructs and the belief formation processes
in order to stress trust into design [46]. Furthermore, formal representations in-
vestigate the dynamics of trust [I6]. In particular, formal models capture how
social connectivities [37] influence the formation of trust in situated relationships
(or interactions) between peers [16]. Recent research has exploited similar trust
models in order to investigate trust in e-commerce [2212440] or other domains
involving human-machine interactions [§]. Other research has, instead, inves-
tigated quantitative aspects of trust [22[24I56]. However, experimental results
expose the limits of extending quantitative approaches to human behaviors [4§].

Another aspect of trust is related to its role at the organizational level
[23132136/49]. It is evident how the formation and perception of trust within, and
between, organizations follow mechanisms grounded in the social and cultural
nature of trust and risk perception [T0J54]. Douglas and Wildavsky elaborate risk
perception from a social viewpoint [I0]. They analyze how social organizations
perceive risk differently [I0]. They initially take into account four problems of
risk [I0]. The four problems consider risk as a joint product of knowledge about
the future and consent about the most desired prospects. It is possible to identify
the best solution when knowledge is certain and consent complete. The problem,

54 M. Felici

in this case, is technical and the solution is one of calculation. By contrast, if
consent is contested, the problem is one of disagreement about how to assess
consequences. In this case the solution requires further coercion or discussion.
In the case in which the consent is complete and the knowledge is uncertain,
the risk is related to insufficient information. Therefore, the solution involves
research. The last case (i.e., knowledge is uncertain and consent is contested) is
how any informed person would characterize risk assessment. In safety-critical
systems [34I55], for instance, safety analysis relies on assessment methodology
(e.g., FMEA, HAZOP, FTA, etc.) in order to solve the problem of knowledge
and consent. Safety assessment gathers evidence in order to acquire consent and
confidence over safety arguments and past experiences. Note that diverse argu-
ments may affect each other (e.g., a negated reliability argument of fault free
may invalidate a formal argument of correctness) [4l5].

Trust in technology is therefore an emergent judgement depending of knowl-
edge becoming available eventually. Trust in technology mediates different per-
spectives (e.g., engineering knowledge or safety arguments) and stakeholders
(often interacting by technological artifacts). Trust in technology as emergent
socially influenced judgement relates (whether directly or not) knowledge and
assessed risk influencing its perception. On the other hand, trust in technology
is the result of complex interactions [50] shaping (e.g., negotiating) knowledge.
This paper pinpoints basic mechanisms capturing emergent trust (strategies and
policies) relating technological knowledge and risk.

3 Safety, Risk and Trust in ATM

The ATM 2000+ Strategy [I3] involves a structural revision of ATM processes,
a new ATM concept and a system approach for the ATM network. The overall
objective [13] is, for all phases of flight, to enable the safe, economic, expedi-
tious and orderly flow of traffic through the provision of ATM services, which
are adaptable and scalable to the requirements of all users and areas of Furopean
airspace. This requires ATM services to go through significant structural, opera-
tional and cultural changes that will contribute towards the ATM 2000+ Strat-
egy. Moreover, from a technology viewpoint, future ATM services will employ
new systems forming the emergent ATM architecture underlying and supporting
the European Commission’s Single FEuropean Sky Initiative.

ATM services, it is foreseen, will need to accommodate an increasing traffic, as
many as twice number of flights, by 2020. This challenging target will require the
cost-effectively gaining of extra capacity together with the increase of safety lev-
els [38/47]. Enhancing safety levels affects the ability to accommodate increased
traffic demand as well as the operational efficiency of ensuring safe separation
between aircrafts [50]. Unfortunately, even maintaining the same safety levels
across the European airspace would be insufficient to accommodate an increas-
ing traffic without affecting the overall safety of the ATM system [I1]. Suitable
safe conditions (e.g., increased safety levels) shall precede the achievement of
increased capacity (in terms of accommodated flights).

Trust Strategies and Policies 55

The introduction of new safety relevant systems in ATM contexts requires
us to understand involved hazards in order to assess the risk and mitigate the
impact of possible failures. Diverse domains (e.g., nuclear, chemical or trans-
portation) adopt safety analysis that originates from a general approach [34I55].
The unproblematic application of conventional safety analysis is feasible in some
safety-critical domains (e.g., nuclear and chemical plants). In such domains,
physical design structures constrain system’s interactions and stress the separa-
tion of safety related components from other system parts. This ensures to some
extent the independence of failures. Unfortunately, ATM systems and procedures
have distinct characteristics (e.g., openness, volatility, etc.) that expose limita-
tions of the approach [T7I820/T9]. ATM systems operate in open and dynamic
environments where it is difficult completely to identify system interactions (e.g.,
between aircraft systems and ATM safety relevant systems) [I7UI8J20/19]. Un-
fortunately, these complex interactions may give rise to catastrophic failures.
Hence, safety analysis has to take into account these complex interaction mech-
anisms (e.g., failure dependence, reliance in ATM, etc.) in order to guarantee
and, possibly, increase the overall ATM safety as envisaged by the ATM 2000+
Strategy [[7UIB20/IY).

Trust is steadily acquiring an important role in the design of socio-technical
systems [46]. This is also driving recent research in ATM [I4]. The interaction
of trust with system features (e.g., system reliability) highlights contingencies
in understanding the role of trust with respect to system dependability and
risk perception. The contextualization of trust in ATM [I4] identifies four main
relevant aspects: Automation, Understanding Trust, Trust and Human-Machine
Systems and Measuring Trust. The level of automation takes into account to
which extent human and machine cooperate in performing an activity. Automa-
tion is, defined as [14], a device or system that accomplishes (partially or fully) a
function that was previously carried out (partially or fully) by a human operator.
The notion of automation influences the understanding of trust in the ATM con-
text. Trust is, defined as [I4], the extent to which a user is willing to act on the
basis of, the recommendations, actions, and decisions of a computer-based ’tool’
or decision aid. This definition of trust originates from general models of trust.
Complacency, may be, distinguishes the ATM domain from others. Complacency
is a kind of automation misuse, which takes into account those situations char-
acterized by an operator’s over-reliance on automation resulting in the failure to
detect system faults or errors [I4]. Although trust and reliability have an impor-
tant role in ATME, air traffic controllers accept (unreliable) tools as far as they
understand the failure modes [T4]. Note that the competence of tool contributes
to the overall trust according to a simple model identified in [I4]. Similarly to
other domains, ATM is seeking to understand the conceptualization, as well as
the quantification, of trust.

2 “Trust is an intrinsic part of air traffic control. Controllers must trust their equipment
and trust pilots to implement the instructions they are given. The reliability of new
systems is a key determinant of controller trust”, [14].

56 M. Felici

4 Trust Strategies and Policies

The ATM context provides many examples in which trust and risk may ex-
hibit competing behaviors. For instance, the introduction of new ATM tools
alms to support air traffic controllers as well as to increase system performance.
However, regardless the (safet% assurance given to the controllers, they often
exhibit an initial lack of trustt] (in system evolution) by managing less traf-
fic than planed. This results in economic pressures on the ATM system and
customer dissatisfaction. The Short-Term Conflict Detection (STCD) system
provides an instance of accepted technology innovation that may result in mis-
trust or, worst, unsafe behaviord]. Figure [l shows a Value Net [44] for the ATM
domain.

CUSTOMERS:
Airlines,
Flyight Customers, etc.

COMPLEMENTORS:
Safety Regulators, e.g.,
Cicil Aviation Authority (CAA),
EUROCONTROL, etc.

COMPETITORS:
Alr Traffic Providers, e.g., A— ATM —

NATS, ENAV, etc.

SUPPLIERS:
Air Traffic Controllers, Unions,
System Manufacturers, etc.

Fig. 1. The value net for ATM

The value net represents all the players and the interdependencies among
them. Along the vertical dimension of the value net are customers and suppliers
[44]. Along the horizontal dimension are competitors and complementors [44].
This section articulates the motivations for trust strategies and policies.

3 “A well-known problem connected with the introduction of a new system (or even
changes to an existing system) is that people in the workplace may feel threatened,
alienated or otherwise uncomfortable with the change”, p. 19, [12].

“Mistrust in automation may develop from annoyance about false alarms, for ex-
ample. While system tools as Short-Term Conflict Detection (STCD) have generally
received widespread acceptance among operators, it is crucial for the operator to de-
velop trust in the system. High trust (overtrust or complacency) in automation may
on the other hand lead operators to abandon vigilant monitoring of their displays
and instruments.”, p. 37, [12].

IS

Trust Strategies and Policies 57

4.1 Trust, Risk and Knowledge: A Game

Various models capture to some extent the notion of trust, although there has
been little attention in the investigation of the dynamics of trust. Social aspects
of trust and risk perception [I0] stress the interaction between trust, risk and
knowledge [23]. Therefore, a social viewpoint provides a convenient intersection
between risk, trust and technology. The different relationships (e.g., indepen-
dence, mediation and moderation) between trust and risk affect emergent behav-
iors [23]. These relationships between risk and trust highlight different behaviors.
The interaction between trust and risk perception founds grounds in the social
aspects of technology [I0]. The characterization of trust and risk [23] suggests
that the underlying constructs interact in the formation of trust and the percep-
tion of risk. This interaction origins from the social aspects of trust and risk [10].
Many models address the understanding of trust and risk, although they often
treat these aspects in isolation. Whereas, social aspects stress their interdepen-
dency. This section presents the interaction between risk, trust and knowledge as
a game (in terms of game theory). The underlying idea is to contextualize (i.e.,
put the risk and trust interdependency into perspective) the conceptualization
of risk, with respect to knowledge and consent, in the case of trust in ATM, with
respect to system reliability. It is possible to capture the interactions between
trust and risk as trust games extending the Prisoners’ Dilemma.

The Prisoners’ Dilemma is a (decision support) game that captures those sit-
uations in which there might be competing or cooperative stakeholders having
different viewpoints. The prisoners’ dilemma has been extensively investigated
and used in social, economic, and political contexts [3[9U33J44]. In the Prisoners’
Dilemma, two prisoners are placed in separate cells. Both prisoners care much
more about their personal freedom than about the welfare of their accomplice.
They may choose to confess or remain silent. If they both confess, they will
receive reduced convictions (i.e., reward for mutual cooperation). If they both
remain silent, they will receive minimal convictions (i.e., punishment for mutual
defection). However, if they disagree (i.e., a prisoner confesses and the other
remains silent, and vice versa), the silent one will receive the full conviction.
Whereas, the one who confessed will be freed. The dilemma here is that, what-
ever the other does, each is better off confessing than remaining silent. But the
outcome obtained when both confess is worse for each than the outcome they
would have obtained had both remained silent. Note that different matrices and
different rules identify different characterizations (e.g., symmetric, asymmetric,
iterative, etc.) of the prisoners’ dilemma [33]. The prisoners’ dilemma captures
those situation in which two players have conflicting interests. Although the
two players have their own interests in winning the game, the better strategy
corresponds to cooperation [3]. It is possible to identify different heuristics de-
pending on whether or not dominant strategies exist [9]. Therefore, the prisoners’
dilemma captures those situations that may result in cooperation or competition
(i.e., co-opetition [44]). The prisoners’ dilemma captures trust between individ-
uals (or groups of individuals). People have to collaborate in order to improve
their situations. If they trust each other, they have a cooperative strategy.

58 M. Felici

Trust games as extensions of the Prisoners Dilemma enable the modeling of
realistic scenarios [52]. Several studies use the prisoners’ dilemma in order to
characterize trust, e.g., in computer-mediated communications [52]. Unfortu-
nately, social connectivity [37] exposes the limitations of interpreting the rate
of cooperation (measured in terms of collective pay-off) as the level of trust in
computer-mediated communications [52]. Characterizations of trust based on the
basic prisoners’ dilemma partially capture trust complexity. Trust games extend
the prisoners’ dilemma in order to overcome some of its practical limitations
[62]. Trust games capture real scenarios that exhibit asynchronous and asym-
metric properties, which expose the limitations of the prisoners’ dilemma [52].
In particular, asymmetric games capture differences of risk perceptions among
individuals, actors or agents (e.g., systems, business competitors, users, etc.).
Risk perception affects interactions. Figure 2l shows a representation of a trust
game.

Knowlegde 1 Knowlegde
1
R1 S1 1 R2 S2
Consent I Consent
T1 P1 : T2 P2
Player 1 : Player 2

Fig. 2. A Trust Game

The game involves two players: Player 1 and Player 2. The two players have
some common knowledge [51] about the system (e.g., system reliability). The two
players have different strategies according to their expected pay-offs (or convic-
tions). For instance, Player 1 (i.e., complete-certain) can have complete consent
and being certain of the system reliability. That is, Player 1 trusts the common
knowledge and expect a similar behavior from Player 2. This corresponds to R1
in the pay-offs matrix (see, Figure[2)). The other pay-offs, i.e., T'1, S1 and P1, cor-
respond to the different combinations of consent and certainty about knowledge,
i.e., contested-certain, complete-uncertain and contested-uncertain, respectively.

Although the two players partially have some common knowledge about the
system, the two players will normally choose their dominant choice (i.e., defec-
tion: P1 and P2). Thus, each will get less than they both could have gotten if
they had cooperated (i.e., cooperation: R1 and R2) [3]. If they play a known
finite number of times, the players would have none incentive to cooperate. By
contrast, if the players will interact an indefinite number of times, coopera-
tion can emerge [3]. Each player chooses the preferred strategy independently
(that is, without knowing each other strategy). Player 1 would like to have a

Trust Strategies and Policies 59

dominant strategy such to have correct trust in technology. However, Player 2
would prefer to have a dominant strategy such to have complete consent in the
risk associated with technology. Once the two players have decided their strate-
gies, Player 1 exhibits the chosen trust in technology and exhibits relevant
evidence (e.g., high reliability or low reliability). Player 2, then, according to
the chosen strategy (i.e., certain or uncertain knowledge), can have a contested
or complete consent of the knowledge exhibited (e.g., high or low reliability).
The unfolding of the game identifies different strategies (e.g., trust as well as
risk taking). The two players may have different overall objectives or cooperate
towards common objectives. The next section shows how the game allows the
understanding and the characterization of the relationship between trust, risk
and knowledge. Moreover, playing the game identifies trust strategies.

4.2 Trust Strategies

This section highlights that trust games allow the characterization of trust in situ-
ated (risk) contexts. Trust games take into account that risk perception and trust
may behave as opponent (or competing) forces, regardless the (system) knowledge
(e.g., system reliability). Playing trust games shows whether the two players ex-
hibit cooperative or competing strategies [44]. Once the players have chosen their
strategies (i.e., trust or mistrust, and certain or uncertain), they both have lim-
ited choices for the next move. For instance, if Player 1 has trust in technology,
whatever the knowledge about it. Player 1 can only exhibit partial knowledge
about the system (e.g., high reliability or low reliability). Although, it seems a
contradiction there are cases in which people have trust in technology, despite low
reliability, because they understand it. Similarly, Player 2 may have a contested
or complete consent over the knowledge in alternative strategies of certain or
uncertain knowledge.

Figure Blshows an example of possible choices (in terms of decision tree) when
both players have trust in knowledge about the system. The decision tree shows
the different combinations and identifies the different outcomes. In this case,
full cooperation between the ATM service provider and Air Traffic Controllers
is a possible outcome. Let us assume that both players Player 1 and Player 2
(e.g., ATM provider and Air Traffic Controllers) have certain knowledge of sys-
tem reliability. Player 1, therefore, can be in two situations: R1 or 7T'1. Similarly,
Player 2 can choose R2 or T2. FigureBlshows the different cases. For instance,
the combination T'1 and R2 may result in a risk taking strategy, because there is
a complete consent on over-trusting the system according to certain knowledge.
This could be the case, when unreliable technology is still adopted, because the
air traffic controllers understand the failure modes. Therefore, they systemati-
cally work-around faulty conditions. Another example is the situations in which
there is a complete consent in technology trust according to certain available
knowledge (i.e., R1 and R2). This would be the optimal case in practice for
trust strategies - people have trust in reliable technology.

The combination of the different conditions allows the identification of poten-
tial strategies. However, any strategy may require further commitments in terms

60 M. Felici

L — e
-~

(R1, R2))

N~ —

Air Traffic
Controllers

_""\~
(R1,T2))

~ . -
_""\~

(T1, R2))

N~ —

ATM Provider

™

Air Traffic
Controllers

Fig. 3. A decision tree

L — = e
-~

(T1,T2))

N~ —

of resources (e.g., financial investment) and activities (e.g., gathering further ev-
idence). Similarly, it is possible to explain and analyze the other conditions and
the cases of mistrust in technology. Note that the players may engage two different
types of games: a cooperative game or a competitive game. The cooperative game
corresponds to situations in which both players have common objectives, despite
that they might have different understanding how to achieve them. The compet-
itive game corresponds to those situations in which both players have different
objectives (e.g., customer vs. supplier, regulator vs. service provider, etc.).

4.3 Trust Policies

Cooperation or competition among ATM actors stress the characterization of
trust strategies in terms of (multi-agent) trust games. Policy-based frameworks
(e.g., KAoS [57I58]) differently support the building on trust (strategies) within
organizations. For instance, KAoS policy supports the specification, analysis,
disclosure and enforcement for semantic web services [57I58]. KAoS provides
a framework in which agents will discover, communicate and cooperate with
other agents and services. Therefore, KAoS enables the specification of trust
policy-based management systems. Hence, trust policy-based management sys-
tems extend trust management systems [3153]. However, trust policies, in this
way, represent and extend security mechanisms within specific virtual organi-
zations. Trust policies would enhance to a certain extent trust, although they
provide limited support for organizational trust.

Policies in safety-critical domains, for instance, are differently decomposed
in order to constrain the behavior of a System of Systems (SoS) [27]. A goal-
based approach is used to decompose safety policies, which represent a means

Trust Strategies and Policies 61

for achieving safety. Although structured notations support the decomposition
process, they face evolution [20]. However, It is possible to captures emergent
complex interactions [I7]. Modeling enables the characterization of evolutionary
structures [21], although it is still required the identification of change strategies.
This stresses the interactions between trust strategies and (structured) trust
policies.

4.4 A Matter of Knowledge

This section points out a characterization of trust games in a logical framework
for reasoning about knowledge and uncertainty [I5I28] . The logical framework
allows the characterization of knowledge (uncertainty) in multi-agents systems
[15]. Therefore, the framework easily captures trust games. The basics consist
of well-established results in modal logic [7I15]. Although the theoretical results
in modal logic extend over several levels of expressiveness (e.g., intuitionistic,
propositional, first-order, etc.), this section refers to a simple propositional modal
logic. Modal logic allows the formalization of the intuitions about necessity and
possibility. There exist many different representations that describe modal logic.
Most of them are equivalent from a theoretical viewpoint. A semantics for propo-
sitional modal logic relies on the possible worlds framework, Kripke structures or
Kripke frames. This allows us to define a notion of validity for modal logic, hence
Kripke models. Intuitively, the Kripke semantics interprets modal formulas like
worlds that are related each other by an accessibility relationship.

The basic framework of modal logic allows the modeling of multi-agents sys-
tems [I5]. For instance, in a group of agents (or players) G, given current infor-
mation, an agent may not be able to tell which of a number of possible worlds
describes the actual state of affairs. An agent is then said to know a fact, if
the fact is true at all the possible worlds (according to given knowledge). It is
possible to extend the modal logical framework in order to express the notions
of common knowledge and distributed knowledge [15]. To express these notions,
the language is extended with the modal operators “everyone in the group G
knows”, “it is common knowledge among the agents in G” and “it is distributed
knowledge among the agents in G” [15]. This allows the modeling of multi-agents
systems or trust games.

5 Conclusions

The social aspects of trust and risk perception highlight the interactions be-
tween trust, risk and knowledge. These interactions exhibit different behaviors
situated in contexts. The analysis of trust with respect to risk perception and
knowledge allows the characterization of practical situations in which trust, or
mistrust, emerges. This paper presents a trust game that captures the inter-
dependency between trust and risk perception. The trust game is an extension
of the prisoners’ dilemma. Unfolding the game corresponds to different trust
strategies. Moreover, the game captures the interdependency between trust and

62 M. Felici

risk perception into contextualized (system) knowledge. Trust games capture
the interactions between risk, trust and knowledge that emerge in practice. Or-
ganizational (e.g., social and cultural) aspects constrain the game, that is, the
movements available to each player. Trust policies may capture these organiza-
tional constraints. Therefore, it could be the case that some practical situations
lack any achievable solution, that is, none of the player has a dominant strategy.
It is possible to formalize the game in a logical framework for reasoning about
knowledge (and uncertainty) [15128].

In conclusions, this paper analyzes the interaction of trust, risk and knowledge
in the context of Air Traffic Management (ATM). It is possible to characterize
the emergence of trust strategies and policies. Trust games highlight that trust
plays a crucial role with respect to risk and knowledge in order to achieve overall
objectives [I3] in the ATM domain. Although trust games capture the interac-
tion between trust, risk and knowledge, in practice, it is still challenging the
instantiation and construction of trust games (e.g., identification of the decision
matrix, rules, etc.). However, the paper stresses and justifies future investigations
of trust strategies and policies. Moreover, it provides a game-oriented character-
ization for the analysis of trust strategies and policies. Future formalization of
the game in theoretical terms would allow the identification of game conditions.
Future work aims to formalize the rules underlying trust games. Moreover, the
instantiation of trust games in situated context would allow the identification of
heuristics [26]. Future work intends to use trust games in order to investigate re-
lationships between different strategies (e.g., adoption of technology innovation,
system testing and validation, etc.) and policies. This would further support
the understanding and generalization of the notion of trust. However, organiza-
tions may, already, use and instantiate trust games in order to understand and
investigate how trust, risk and knowledge interact within their contexts.

Acknowledgements

This work has been supported by the UK EPSRC Interdisciplinary Research Col-
laboration in Dependability, DIRC - http://www.dirc.org.uk - grant GR/N13999.

References

1. Alfarez Abdul-Rahman and Stephen Halles. A distributed model of trust. In
Proceedings of the New Security Paradigms Workshop, pages 48—-60. ACM, 1997.

2. Ross Anderson. Security Engineering: A Guide to Build Dependable Distribute
Systems. Wiley Computer Publishing, 2001.

3. Robert Axelrod. The Evolution of Co-operation. Penguin Books, 1990.

4. Robin Bloomfield and Bev Littlewood. Multi-legged arguments: the impact of
diversity upon confidence in dependability arguments. In Proceedings of the 2003
International Conference on Dependable Systems and Networks, DSN’03, pages
25-34. IEEE Computer Society, 2003.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Trust Strategies and Policies 63

Robin Bloomfield and Bev Littlewood. On the use of diverse arguments to in-
crease confidence in dependability claims. In Denis Besnard, Cristina Gacek, and
Cliff B. Jones, editors, Structure for Dependability: Computer-Based Systems from
an Interdisciplinary Perspective, chapter 13, pages 254—268. Springer-Verlag, 2006.
Marco Carbone, Mogens Nielsen, and Vladimiro Sassone. A formal model of trust
in dynamic netwotks. In Proceedings of the First International Conference on
Software Engineering and Formal methods (SEFM’03). IEEE Computer Society,
2003.

Alexander Chagrov and Michael Zakharyaschev. Modal Logic. Number 35 in Oxford
Logic Guides. Oxford University Press, 1997.

I. Dassonville, D. Jolly, and A. M. Desodt. Trust between man and machine in a
teleoperation system. Reliability Engineering € System Safety, 53:319-325, 1996.
Avinash K. Dixit and Barry J. Nalebuff. Thinking Strategically: The Competitive
Edge in Business, Politics, and Everyday Life. W. W. Norton & Company, 1991.
Mary Douglas and Aaron Wildavsky. Risk and Culture: An Essay on the Selection
of Technological and Environmental Dangers. University of California Press, 1982.
John H. Enders, Robert S. Dodd, and Frank Fickeisen. Continuing airworthiness
risk evaluation (CARE): An exploratory study. Flight Safety Digest, 18(9-10):1-51,
September-October 1999.

EUROCONTROL. Human Factor Module - Human Factors in the Development
of Air Traffic Management Systems, 1.0 edition, 1998.

EUROCONTROL. EUROCONTROL Air Traffic Management Strategy for the
years 2000+, 2003.

EUROCONTROL. Guidelines for Trust in Future ATM Systems: A Literature
Review, 1.0 edition, 2003.

Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Y. Vardi. Reasoning
about Knowledge. The MIT Press, 2003.

Rino Falcone and Cristiano Castelfranchi. The socio-cognitive dynamics of trust:
Does trust create trust? In R. Falcone, M. Singh, and Y.-H. Tan, editors, Trust in
Cyber-societies, number 2246 in LNAI, pages 55-72. Springer-Verlag, 2001.
Massimo Felici. Capturing emerging complex interactions - safety analysis in atm.
In Chris Johnson, editor, Proceedings of the 2nd Workshop on Complexity in Design
and Engineering, GIST Technical Report G2005-1, pages 120-129, 2005.

Massimo Felici. Evolutionary safety analysis: Motivations from the air traffic man-
agement domain. In R. Winther, B.A. Gran, and G. Dahll, editors, Proceedings
of the 24th International Conference on Computer Safety, Reliability and Security,
SAFECOMP 2005, number 3688 in LNCS, pages 208-221. Springer-Verlag, 2005.
Massimo Felici. Capturing emerging complex interactions: Safety analysis in air
traffic management. Reliability Engineering & System Safety, 91(12):1482-1493,
2006.

Massimo Felici. Modeling safety case evolution - examples from the air traffic
management domain. In Nicolas Guelfi and Anthony Savidis, editors, Proceedings
of the Second International Workshop on Rapid Integration of Software Engineering
Techniques, RISE 2005, number 3943 in LNCS, pages 81-96. Springer-Verlag, 2006.
Massimo Felici. Structuring evolution: on the evolution of socio-technical systems.
In Denis Besnard, Cristina Gacek, and Cliff B. Jones, editors, Structure for Depend-
ability: Computer-based Systems from an Interdisciplinary perspective, chapter 3,
pages 49-73. Springer, 2006.

David Gefen, Elena Karahanna, and Detmar W. Straub. Inexperience and experi-
ence with online stores: The importance of tam and trust. IEEE Transactions on
Engineering Management, 50(3):307-321, August 2003.

64

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

M. Felici

David Gefen, V. Srinivasan Rao, and Noam Tractinsky. The conceptualization of
trust, risk and their relationship in electronic commerce: The need for clarifications.
In Proceedings of the 36th Hawaii International Conference on Systems Sciences
(HICSS’03). IEEE, 2003.

David Gefen and Detmar W. Straub. Consumer trust in b2c e-commerce and the
importance of social presence: experiments in e-products and e-services. Omega:
The International Journal of Management Science, 32:407-424, 2004.

Gerd Gigerenzer. Reckoning with Risk: Learning to Live with Uncertainty. Penguin
Books, 2002.

Gerd Gigerenzer, Peter M. Todd, and The ABC Research Group, editors. Simple
Heuristics That Make Us Smart. Oxford University Press, 1999.

Martin Hall-May and Tim Kelly. Defining and decomposing safety policy for sys-
tems of systems. In R. Winther, B.A. Gran, and G. Dahll, editors, Proceedings of
SAFECOMP 2005, number 3688 in LNCS, pages 37-51. Springer-Verlag, 2005.
Joseph Y. Halpern. Reasoning about Uncertainty. The MIT Press, 2003.

Erik Hollnagel. Human Reliability Analysis: Context and Control. Academic Press,
1993.

Chris W. Johnson. Failure in Safety-Critical Systems: A Handbook of Accident
and Incident Reporting. University of Glasgow Press, Glasgow, Scotland, October
2003.

Audun Josang, Claudia Keser, and Theo Dimitrakos. Can we manage trust? In
P. Herrmann et al., editors, Proccedings of iTrust 2005, number 3477 in LNCS,
pages 93—107. Springer-Verlag, 2005.

Eva C. Kasper-Fuehrer and Neal M. Ashkanasy. Building trus in cross-cultural
collaborations: Toward a contingency perspective. Journal of Management, 27:235—
254, 2001.

Steven Kuhn. Prisoner’s dilemma. In Edward N. Zalta, editor, The Stanford
Encyclopedia of Philosophy, http://plato.stanford.edu/archives/fall2003/entries/
prisoner-dilemma/, 2003.

Nancy G. Leveson. SAFEWARE: System Safety and Computers. Addison-Wesley,
1995.

Bev Littlewood, Martin Neil, and Gary Ostrolenk. The role of models in managing
the uncertainty of software-intensive systems. Reliability Engineering € System
Safety, 46:97-95, 1995.

Yadong Luo. Building trust in cross-cultural collaborations: Toward a contingency
perspective. Journal of Management, 28(5):669-694, 2002.

Donald MacKenzie. Social connectivities in global finalcial markets. Environment
and Planning D: Society and Space, 22:83-101, 2004.

Stuart Matthews. Future developments and challenges in aviation safety. Flight
Safety Digest, 21(11):1-12, November 2002.

D. Harrison McKnight and Norman L. Chervany. The meanings of trust. Technical
Report 96-04, University of Minnesota, 1996.

D. Harrison McKnight and Norman L. Chervany. Conceptualizing trust: A ty-
pology and e-commerce customer relationships model. In Proceedings of the 34th
Hawaii International Conference on System Sciences, pages 1-9. IEEE, 2001.

D. Harrison McKnight and Norman L. Chervany. Trust and distrust definitions:
One bite at a time. In R. Falcone, M. Singh, and Y.-H. Tan, editors, Trust in
Cyber-societies, number 2246 in LNAI, pages 27-54. Springer-Verlag, 2001.

D. Harrison McKnight, Larry L. Cummings, and Norman L. Chervany. Trust
formation in new organizational relationships. Technical Report 96-01, University
of Minnesota, 1996.

http://plato.stanford.edu/archives/fall2003/entries/prisoner-dilemma/
http://plato.stanford.edu/archives/fall2003/entries/prisoner-dilemma/

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

Trust Strategies and Policies 65

Neville Moray, Douglas Hiskes, John Lee, and Bonnie M. Muir. Trust and human
intervention in automated systems. In Jean-Michel Hoc, Pietro C. Cacciabue, and
Erik Hollnagel, editors, Fxpertise and Technology: Cognition & Human-Computer
Cooperation, chapter 11, pages 183-194. Lawrence Erlbaum Associates, 1995.
Barry J. Nalebuff and Adam M. Brandenburger. Co-opetition. HarperCollinsBusi-
ness, 1996.

Mogens Nielsen and Karl Krukow. Towards a formal notion of trust. In Proceedings
of PPDP’03. ACM, 2003.

Donald A. Norman. Emotional Design: Why We Love (or Hate) Everyday Things.
Basic Books, 2004.

Michael Overall. New pressures on aviation safety challenge safety management
systems. Flight Safety Digest, 14(3):1-6, March 1995.

Alberto Pasquini, Giuliano Pistolesi, and Antonio Rizzo. Reliability analysis of
systems based on software and human resources. IEEE Transactions on Reliability,
50(4):337-345, 2001.

Paul A. Pavlou, Yao-Hua Tan, and David Gefen. The transitional role of institutial
trust in online interorganizational relationships. In Proceedings of the 36th Hawaii
International Conference on Systems Sciences (HICSS’03). IEEE, 2003.

Charles Perrow. Normal Accidents: Living with High-Risk Technologies. Princeton
University Press, 1999.

Eric Rasmusen. Games and Information: An Introduction to Game Theory. Black-
well, second edition, 1989.

Jens Riegelsberger, M. Angela Sasse, and John D. McCarthy. The researcher’s
dilemma: evaluating trust in computer-mediated communication. International
Journal of Human-Computer Studies, 58:759-781, 2003.

Sini Ruohomaa and Lea Kutvonen. Trust management survey. In P. Herrmann
et al., editors, Proccedings of iTrust 2005, number 3477 in LNCS, pages 77-92.
Springer-Verlag, 2005.

J.N. Sorensen. Safety culture: a survey of the state-of-the-art. Reliability Engi-
neering € System Safety, 76:189-204, 2002.

Neil Storey. Safety-Critical Computer Systems. Addison-Wesley, 1996.

Ananth Uggirala, Anand K. Gramopadhye, Nrain J. Melloy, and Joe E. Toler. Mea-
surement of trust in complex and dynamic systems using a quantitative approach.
International Journal of Industrial Ergonomics, 34(3):175-186, 2004.

Andrzej Uszok et al. Applying KAOS services to ensure policy compliance for
semantic web services workflow composition and enactment. In S.A. Mecllraith,
editor, Proceedings of ISWC' 2004, number 3298 in LNCS, pages 425-440. Springer-
Verlag, 2004.

Andrzej Uszok et al. KAOS policy management for semantic web services. I[EFE
Intelligent Systems, pages 32—41, July/August 2004.

Eric Yu and Lin Liu. Modelling trust for system design using the i* strategic
actors framework. In R. Falcone, M. Singh, and Y.-H. Tan, editors, Trust in
Cyber-societies, number 2246 in LNAI, pages 175-194. Springer-Verlag, 2001.

Development of Extensible and Flexible Collaborative
Applications Using a Web Service-Based Architecture’

. PR 2 . . . , 2
Mario Anzures-Garcia , Miguel J. Hornos", and Patricia Paderewski-Rodriguez

! Facultad de Ciencias de la Computacién, Benemérita Universidad Auténoma de Puebla,
14 sur y avenida San Claudio. Ciudad Universitaria, San Manuel,
72570 Puebla, Mexico
anzures@correo.ugr.es
2 Dept. de Lenguajes y Sistemas Informéticos, E.T.S. de Ingenierias Informatica y de
Telecomunicacion, Universidad de Granada, C/ Periodista Saucedo Aranda, s/n,
18071 Granada, Spain
{mhornos,patricia}@ugr.es

Abstract. This paper presents a study of the main current collaborative
applications and shows how their architectural models focus on the interactive
aspects of the systems for very specific applications. It also analyses state-of-the-
art web service-based collaborative applications and shows how they only solve
specific problems and do not provide an extensible and flexible architecture. From
this study, we conclude that there is currently no standard architecture (and even
less a web service-based one) which can be taken as a model for collaborative
application development. We therefore propose a web service-based architectural
model for the development of this type of application. This model provides
flexible collaborative sessions in order to facilitate collaborative work in a
consistent way and with group awareness mechanisms. The proposed architecture
enables applications, components or tools to be added and can be extended with
new web services when required without the need to modify existing services.
The resulting collaborative applications are therefore flexible and extensible.

1 Introduction

As a result of technological progress (especially in telecommunications) and also the
development of new software technologies and globalization, there has been a strong
trend towards distributed groupwork, crossing (for example) geographical, organizational
and cultural boundaries. For this, software systems are needed that support, contribute
and strengthen groupwork, and such systems must be supported by models,
methodologies, architectures, and platforms that allow CSCW (Computer Supported
Cooperative Work) applications to be developed with respect to current needs.
Development of groupware applications is based on different approaches including
object-oriented, component-oriented, aspect-oriented, and agent-oriented ones. Each
groupware system has been designed to support a particular form of cooperative work
or a specific range of cooperative work forms. In recent years, the use of SOA

" This work is financed by the Spanish project CICYT (TIN2004-08000-C03-02).

N. Guelfi and D. Buchs (Eds.): RISE 2006, LNCS 4401, pp. 66 2007.
© Springer-Verlag Berlin Heidelberg 2007

Development of Extensible and Flexible Collaborative Applications 67

(Service-Oriented Architecture) for the development of distributed collaborative
applications has increased since it provides an abstract interface that supplies a set of
loosely coupled, asynchronous, document-based services. This makes the resulting
applications reusable, efficient and adaptable [10]. The most common way to implement
SOA is with web services and since they have been developed under a series of standard
protocols and open technologies, the resulting applications are interoperable, portable,
and easy to integrate [9]. For this reason, the computer industry has increasingly focused
on web services as an alternative for the construction of open distributed Internet
systems since any web-accessible program can be wrapped as a web service, and the
system components can therefore be implemented as services. Web service technology
is ideal for implementing collaborative work because it is based on the notion of
building new applications by combining network-available services.

An architectural model is necessary, however, for the development of flexible and
extensible collaborative applications and which supports the three key characteristics of
CSCW systems: communication, coordination, and collaboration [8]. For this purpose,
we present a web service-based architecture which enables flexible (i.e. able to support
different ways of organizing the groupwork) and extensible (i.e. able to increase the
functionality of the application according to new requirements) collaborative systems to
be developed.

In Section 2 of this paper, we present the conclusions of the analysis carried out on
the main architectural models and environments for the development of collaborative
applications, in addition to a study on a series of web service-based collaborative
applications. Section 3 shows our architecture and describes its main elements. Section
4 briefly explains the use of our architecture for developing collaborative applications.
The final section presents our conclusions and future lines of research.

2 Related Work

A wide range of applications, prototypes, and products have been developed to support
groupwork. Each groupware system has been designed to support a particular form of
cooperative work or a specific range of cooperative work forms. There are also a wide
variety of architectural models and environments which help us develop collaborative
applications, such as the ones analysed in Section 2.1. In recent years, web services have
been the technological basis for the development of CSCW applications. The study
carried out on nine of the most representative web service-based applications of this
type is presented in Section 2.2.

2.1 Models and Environments for Developing Collaborative Applications

Architectural models attempt to model the system as a group of components and the
relationships between them, e.g. Interactor Models [18], PAC [6], and MVC (Model-
View-Controller) [16]. Extensions have also been proposed for CSCW systems, e.g.
PAC* [4] and Dewan’s generic architecture [7], and new models such as Patterson’s
taxonomy [23], COCA (Collaborative Objects Coordination Architecture) [20], Clock
[14] and Clover [19]. One disadvantage of these models is that they focus on the
interactive aspects of the system (with the exception of COCA, although this is mainly

68 M. Anzures-Garcia, M.J. Hornos, and P. Paderewski-Rodriguez

directed towards designing independent coordination policies in a declarative language).
None of these architectures provide a consistent model which allows third-party
components to be added.

Although a number of environments have been developed to simplify the inherent
complexity of developing groupware applications, these do not provide all the aspects
required to develop flexible and extensible collaborative applications. We will now
indicate the main disadvantages of the analyzed development environments. While
Groupkit [24] provides a library of components for the construction of multi-user
interfaces, these are not easy to customize and cannot interoperate with each other.
Habanero [5] enables their single-user applications to be converted into collaborative
applications and collaborative applications to be developed with group awareness
mechanisms, but extra effort is needed to implement different group awareness
mechanisms and it is not platform independent. JSDT (Java Shared Data Toolkit) [3]
provides a set of APIs to construct collaborative applications with group awareness
mechanisms, but these applications are tightly coupled with the environment and are
dependent on it. COAST (Cooperative Application Systems Technology) [27] allows
document-based synchronous collaborative applications to be developed by means of a
general architecture and the corresponding classes; however, it does not provide any
consistency mechanisms, and this can result in conflicts and loss of work. TOP (Ten
Objects Platform) [17] enables the development of collaborative applications using the
definition of ten objects, but it does not establish mechanisms for integrating other
applications. ANTS [13] facilitates the development of CSCW systems by providing
monitoring and group awareness services and a three-layer architectural model; its main
disadvantage is that it does not allow third party components to be added. CoopTEL
[12] defines collaborative applications based on a model of components and aspects;
however, it does not allow other applications to be integrated.

2.2 Web Service-Based Collaborative Applications

In terms of the use of web services for the development of collaborative applications,
nine applications have been analyzed, including three from the CAROUSEL group
(CollAboration fRamewOrk for UniverSal accEssibiLity): the universal accessibility
infrastructure in collaboration services [26], the framework for collaboration and
audio/videoconferencing [11], and collaborative web services and the W3C Document
Object Model [25]. The remaining six applications are: dynamic service cooperation
[28], processes of virtual plant production [29], distributed collaborative CAD systems
based on web services [21], using web services implementing collaborative design for
CAD systems [22], handling of exceptions [15], and providing context information to
CSCW applications [2]. Analysis was carried out according to the three main
characteristics of CSCW systems and to the implementation, architecture, and
technologies used for the web services. In accordance with all three key characteristics
of CSCW systems, we observed the following:

= Communication: In general, this is implemented using HTTP, XML and SOAP
messages. The CAROUSEL group has developed certain subsystems to solve
specific problems, e.g. they implemented an adapter with a definite protocol to
support communication between applications and mobile devices.

Development of Extensible and Flexible Collaborative Applications 69

= Collaboration: Seven out of the nine applications implement asynchronous and
synchronous collaboration. The application for handling exceptions has two
cooperation models: simple (whereby a partner controls the cooperative process) and
cooperative (integrating locally available web services or those provided by external
partners). In the dynamic service cooperation application, collaboration is carried out
in the cooperative process and this consists of activities and transitions and is used to
orchestrate the execution of a specific aspect of cooperation.

= Coordination: Four out of the nine applications define a session explicitly. The
three CAROUSEL group applications define the XGSP (XML-based General
Session Protocol) [11] which provides a general session layer, enabling different
users of the same application to interact with each other and the incorporation of
different collaboration applications in the system; this protocol also defines various
floor control policies. The fourth application which establishes a session is the
collaborative CAD system. This is based on web services and defines a session
manager which is responsible for coordinate the designer’s participation.
Applications for providing context information to CSCW use a repository to store,
recover, and exchange context information, thereby supplying group awareness.

In terms of web service use, we should mention:

= Web service implementation: A web service is built for each component,
service, characteristic, or collaborative application. Each application differs in the
way it is implemented as a web service.

= Collaborative architecture: This is implemented by each application according
to the needs and application domain, and therefore results in different
architectures.

= Technologies and standards: The applications generally use web service
technology and standards: XML, SOAP, WSDL, and HTTP.

In conclusion to the study and analysis of the collaborative applications based on web
services, we have observed that there is currently no architecture for developing
extensible and flexible CSCW systems based on this type of service. The use of web
services generally offers the possibility of establishing asynchronous and synchronous
communication; however, it would be advisable to use standard web services
technologies to enable shared access control, notification and group awareness
mechanisms to be established. For coordination purposes, it would be advisable to
develop a session manager that allows a session to be created, joined, or left in real time,
and to provide a repository that serves as the basis for group awareness and notification
mechanisms in order to ensure the consistency of shared information.

3 Architecture

We propose a web service-based architecture for developing collaborative systems,
directed towards overcoming the shortcomings of current architectural models. Figure 1
presents the general outline of the architecture proposed, showing its main layers,
modules, and services. The design of our proposal allows the collaborative aspects to be
separated from the functional components of the application. Consequently, there are
two layers: the Group Layer (which contains all the information relating to collaboration

70 M. Anzures-Garcia, M.J. Hornos, and P. Paderewski-Rodriguez

aspects and comprises the Session Management and Shared Control Access modules,
and the Group Awareness and Registration services) and the Application Layer (which
allows components, tools or applications to be integrated in the architecture without the
need to modify it. Both layers are independent but are interconnected by the
communication mechanisms.

3.1 Group Layer

This is the central layer of the architecture where all the activities relating to groupwork
are carried out. Firstly, it is important to provide the user with mechanisms that allow
him/her to start groupwork through the Registration service. Secondly, a shared workspace
is established through the sessions, which are sufficiently flexible to be adapted to
different forms of groupwork organization. Thirdly, a series of policies to facilitate

Group Layer

WSDL .
Session

B
Group Group <:> <::> Management
Lwareness Awareness

—) .
Registration <——=="™> upnI

S0OAP

Communication Mechanisms

Shared Access <::> HTTP

Control

HTTP SOAP WSDL uDoi
Communication Mechanisms

g

Application Layer

Shared Component [Component
Whiteboard A N

Fig. 1. Web Service-based Architecture for the Development of CSCW Systems

Development of Extensible and Flexible Collaborative Applications 71

interaction between users and with the shared resources is defined; these policies avoid
conflicts leading to information inconsistencies. Fourthly, mechanisms are supplied that
give the user information about what the other users are doing and what is happening in
the shared space. We will now describe the elements that carry out these tasks.

= Registration Service: This service registers a new session and the user who creates
it, and the users in a current session. During user registration, an authentication
mechanism enables user identification (by entering the login and password) for
session participation, but only when necessary and in persistent sessions, i.e. those
that keep the session state until the next connection. Users initiate a session by
invoking the Registration service, which stores session information (session name,
user id, location, etc.) in the repository called Registration. This repository is also
used as a local repository (instead of a UDDI repository) when it is necessary to
execute constant location requests on the Registration service and to avoid important
limitations, especially in the case of synchronous sessions which require an
immediate response. The Registration service provides the user with information
about how to register a session, currently open sessions, number of users in each
one, and detailed information about each user (name, alias, occupation, photograph,
etc.). The Registration service notifies the different Group Layer components of any
changes (when a new session or a new user is registered) by means of a notification
mechanism. This mechanism is based on the interchange of XML documents
through messages, providing relations that are loosely coupled between services;
since the web service interface adds an abstraction layer to the environment, the
connections are flexible and adaptable [1]. For this reason, each component carries
out the following tasks in order to adapt to the new groupwork conditions (we
consider the two cases mentioned):

1. Registration of a new session and the user who creates it; each component is
notified when there is a new session and a participant in it.

2. Registration of a new user in an existing session. The Registration service
interacts with the other Group Layer components (see Figure 1) as follows:

» Session Management Module: The Registration service notifies this module
of the existence of the new user in order to assign a role to him/her according
to the session management policies currently being used. Simultaneously,
this module notifies the Registration service when a user leaves the session
in order to update the Registration repository and to report this new situation
to the Shared Access Control module and to the Group Awareness service.

* Shared Access Control Module: This module is notified when a user registers
in a session so that the access control policies may be adapted to the new
situation.

* Group Awareness Service: The Registration service supplies it with all the
necessary information (user data, name and type of open sessions, etc.) in
order to provide a shared workspace context where each user knows which
users are in a session, what sessions are currently open, whether a user has
entered the session, type of session (asynchronous or synchronous), and
whether this is a synchronous persistent session.

72

M. Anzures-Garcia, M.J. Hornos, and P. Paderewski-Rodriguez

Session Management Module: This module supplies facilities for adapting to the
different needs and working styles of the various groups. For this reason, it
manages the users (registration and group membership) and orchestrates the
session (see Figure 2). The Session Management module provides a user interface
(web page) in order to register a new session or a user in an existing session; to
enable users to join, leave, invite someone to, and exclude someone from a
session; to define the type of session (synchronous or asynchronous), deciding
whether the synchronous session is persistent; to establish how the groupwork will
be organized by means of the session management policies; to provide
information about the session state; to invoke the application to be used (e.g. a
shared whiteboard) and/or some tool that is needed; and to facilitate elements that
allow the collaborative work to be suspended, resumed and stopped. The first
three tasks correspond to the User management module and the remaining tasks
correspond to the Session Orchestrating module. The collaborative session can be
asynchronous or synchronous. Since the asynchronous sessions are based on SOA,
they present a service requester, for example the user who requests the service

Session Orchestrating
e <3
Shared Asynchronous
Resowrces Session

Synchronous Asynchronous
Session Session
User

Management
upDI
d User 1
Shared | 4=—% yiTp | s0AP | WSOL UDDI [
Resowrces UL

C ication Mechani =

tod md

SOAP

Session Management HTTP | 8

Palicy 1

GihiL)

ROL (F1 User £
| session Management

‘s, ROL(P1 Policy 2
GEhLY

ROL (F2,)

ROL (P2 L}

ROL(FN,)

ROL (FH,

Session Management Policies

Fig. 2. Components of the Session Management Module

Development of Extensible and Flexible Collaborative Applications 73

(such as an e-mail). The user invokes the asynchronous application (service
provider) through the interface provided by this module. The service description is
in a local repository called the Asynchronous Session (for an immediate response
in the case of many requests) as well as in a UDDI repository. The local repository
also stores user-generated information or information that will be shared and
accessed by other participants.

The synchronous session provides a shared space that allows connected users to
work together on shared resources to carry out a specific task in a certain time. In
order to achieve this:

e It provides a repository of shared resources, where it registers the shared
resources, their state (free or busy), the names of the users using them and the
roles that these are playing, the information associated with each resource, as well
as the waiting list of potential users associated to each one.

e [t facilitates session management policies. We currently consider two kinds of
policies: the first is a moderate session, where a moderator or president controls
and coordinates the session, selects the appropriate tools and establishes turns for
user participation; and the second is a brainstorming session which functions in a
similar way to instant messaging applications. The group can change the session
management policy in run time. Each policy is implemented by an XML file and
determines the roles that users can play. Each role represents the set of access
rights that users have on shared resources and the actions or tasks that they can
perform. The roles are dynamic, since a user can play several roles during a
session as long as the new role satisfies the current session management policy.

e [t informs the users when a change has occurred (a user joins or leaves a session, a
resource is free or busy, any modification of the session state or the information of
the shared resource, etc.) through the notification mechanism. In order to do so, it
uses the user interface to invoke the Application Layer containing the application,
component or tool to be used in the collaborative session.

The Session Management module is the core of the architecture since it interacts
with the rest of the Group Layer components (see Figure 1) in the following way:

e Registration Service: The Session Management module invokes this service to
register a new session or a new user (and also to notify when a user leaves a
session and when a session ends) so as to keep the information used by this service
up-to-date.

e Shared Access Control Module: The Session Management module reports two
types of situations to this module: when a user joins a session (so that it can grant
the user access rights to the shared resources according to their role and can
determine whether these rights allow them to use the shared resource) and when a
user leaves the session (so that this module can adapt to the new situation and can
therefore liberate the resources used by the user in order to assign them to the
following user on the list).

e Group Awareness Service: The Session Management module informs this service
of all the changes that have occurred, stores them in the Group Awareness
repository, and transmits the changes to each user participating in the collaborative
session or in the task that is being carried out (only certain group members can be
involved in a task).

74

M. Anzures-Garcia, M.J. Hornos, and P. Paderewski-Rodriguez

This module facilitates the development of flexible collaborative applications, i.e.
applications that can adapt to different groupwork organizational styles as they allow:

e Synchronous and asynchronous communication;

e Various groupwork practices, by supplying different session management
policies that can change in run time;

e Dynamic roles for group members so that users can play various roles during a
session;

e Different users in a session as users can join and leave a session during
application execution.

Shared Access Control Module: This module coordinates interaction between
users to avoid conflicts in the shared workspace (because of cooperative and
competitive activities) by supplying dynamically generated, temporary
permissions to collaborating users. In this way, the race conditions are lessened,
mutually exclusive resource usage is guaranteed, and safety, timeliness, fairness,
adaptability, and stability are provided to session participants. The permissions
granted to users depend on their possible roles, and specify which user is allowed
to send, receive, or manipulate shared data at a given moment. The default policy
is “free for all”, where conflicts are resolved by serialization of access requests to
shared resource on a first-come-first-served basis. The access request is made to
the Shared Resources repository (see Figure 2), which verifies whether:

1. The user has the rights needed to use the resource:

e If the resource is free, the user is allowed to use the resource in order to
carry out the task, reflecting any modification in the interface of the users
involved in this task.

» If the resource is busy, the user requesting the resource is informed and is
put on the waiting list. If the users do not want to wait for the resource, they
can remove themself from the waiting-list. Once the resource is free
(because the user using it has finished their task or left the session), it is
assigned to the next user on the list. This process is repeated until either all
the users on the waiting list have used the resource or the session ends.

2. The user does not have the rights to use the resource. The permission is therefore
refused and the resource is granted to the following user with suitable rights on
the waiting list.

This module interacts with the following elements (see Figure 1):

* Registration Service: Every time a user registers, this service informs the Shared
Access Control module that it can assign the corresponding permissions to the
user according to their role so that they can use the shared resources. This service
also notifies this module when a user leaves the session so that it can liberate the
resource assigned to him/her and assign it to the next user on the waiting list. If
the user leaving the session was not assigned a resource, this module adapts to the
new situation.

* Session Management Module: This notifies the Shared Access Control module of
the role played by the user (so that they can be assigned access rights for a certain

Development of Extensible and Flexible Collaborative Applications 75

shared resource), and also of the current state of the shared resources (so that they
could be used by users fulfilling the restrictions imposed by their roles).

* Group Awareness Service: This service is notified when a resource is modified or
assigned to a new user by means of the Session Management module.

= Group Awareness Service: For users to be able to cooperate, they must be aware
of the presence of other members in the session and of the actions that each one
has carried out and is carrying out. One of the main tasks of any CSCW system is
to provide the users with the necessary information to support group awareness,
and this helps session participants establish a common context and coordinate
activities, thereby avoiding surprises and reducing the probability of conflicts in
the group. This service therefore stores each action carried out by the users in the
session in the Group Awareness repository; in this way, the other participants are
notified by means of the notification mechanism. This service interacts with the
other Group layer components (see Figure 1) in the following way:

* Registration Service: It informs the Group Awareness service when someone
joins or leaves a session so that other users are aware of which users can carry out
the collaborative task. It also provides a list of the users who are participating in a
session, the name and type of the open sessions, and personal information for
each user (e.g. name, alias, occupation, photograph, etc.).

* Session Management Module: It informs this service of all the changes that occur
in each session (when a user joins or leaves a session, whether a resource is free
or busy, information about modifications made to the shared resources, when a
session is initiated, suspended, resumed, stopped, etc.) using the notification
mechanism. In this way, users know the state of the shared resources as well as
who is using them, and each user’s state is shown with an icon.

* Shared Access Control Module: When a resource is modified or assigned to a
new user, these changes must be reflected in each user’s interface in order to
maintain group awareness.

3.2 Application Layer

This layer contains the specific collaborative applications which users are interested in,
i.e. those that they want to use for carrying out groupwork (e.g. a shared whiteboard).
Since this has been designed using a service-oriented architectural style, other
applications, components or tools that are wrapped as web services may be added to
provide the functionalities needed for carrying out the groupwork or corresponding
collaborative task. These services must be described and later published in a UDDI
repository and also a local repository to avoid any limitation in run time and to give an
immediate response to a large number of requests. We must follow two steps to add
another application, component or tool.

1. To invoke the corresponding web service:

* the required service must be chosen from the list of available services;

* the invoked service must provide the name of the application and the
resources that will be shared so that the new application can add them to the
collaborative environment.

76 M. Anzures-Garcia, M.J. Hornos, and P. Paderewski-Rodriguez

2. Once the web service has been obtained:

* the shared resources are registered in the Shared Resources repository so
that they can be used by users with roles with the corresponding
permissions;

* the Session Management module informs the Registration service of the
presence of the new application so that this service can send the list of users
participating in the session;

* the Session Management module provides the roles played by each user
with their respective access rights to the shared resources and notifies the
Group Awareness service of the existence of the new application;

* the added application appears in a new window of each user’s web page
with the application name at the top, and with the names of the users and
shared resources in the main part of the window.

The functionality of the architecture can therefore be extended with new web services
when needed without having to modify existing services. The addition of services is
simple and quick since it is only necessary to invoke the service through an interface and
(if the service contains the necessary information) to display the window with the new
collaborative application. It will not be possible to add a service which does not have the
necessary information (name of the application and resources to be shared).

3.3 Communication Mechanisms

The communication mechanisms (see Figure 3) allow groupwork by enabling
sessions to be implemented in such a way that users can join and leave a session, and
different coordination policies can be established; they also provide group awareness
mechanisms. These mechanisms manage external communication (communication
between layers) and internal communication (communication between modules
and/or services of a layer) by interchanging documents through messages.

Communication Mechanisms

Service
Register
&R 85 %
(8] Q, %
§ o 8
Bind
: HTTP
Service Session Service

Register

Requester =~ Management Provider

Fig. 3. Communication Mechanism Elements

Development of Extensible and Flexible Collaborative Applications 77

The use of an XML document-based communication model provides relations
which are loosely coupled between services, and this results in flexible and adaptable
connections. We use the following standard web services technologies: HTTP, SOAP,
WSDL and UDDI.

The HTTP protocol enables the user to access the web page of the architectonical
proposal. With this page, users are connected with the Session Management module
so that they may either create a new (asynchronous/synchronous) session or join a
session in progress. Consequently, this module invokes the Registration service with
the SOAP protocol for registering either the new session and the user who creates it or
a new user in the session in progress. The Registration service must obviously be
described in WSDL in order to specify what this service does, where it is located, and
how it is invoked, and it must be published in the UDDI repository.

4 Development of Collaborative Applications

Thanks to the design of the proposed architecture, each new collaborative application
may be assembled with reusable parts, e.g. the Registration service, Session
Management module, shared access control policies, Group Awareness service and
Application Layer. This is achieved as a result of the following features:

= Each element of the architecture is based on SOA and is designed independently
(this enables the responsibilities of each to be perfectly separated, thereby
facilitating their reuse).

= SOA is implemented with web services which are based on a series of standard
protocols and open technologies (the collaborative application can therefore be
used on any platform and operative system).

= The architecture can be used to develop any collaborative application by
assembling its reusable elements.

Our architecture reduces the time and effort devoted to the development of a
collaborative application since it is only necessary to select and/or invoke its elements
through the user interface (in this case, a web page). The steps to be followed from
the user interface are:

1. To register a new session and the users who will take part in this by means of
the Registration service;

2. To choose how the groupwork will be organized, defining the type of session,
session management policies, and roles that users can play. This is carried out
by the Session Management module.

3. The Shared Access Control module automatically assigns the access rights to
the shared resources for each user according to their role.

4. The Group Awareness service provides personal information of each user, the

list of users, session type and state, and notifies of every change that occurs

(e.g. when a user joins or leaves a session).

To invoke the collaborative application that the user wants to work with.

6. Finally, once the application has been obtained, it is possible to carry out the
groupwork.

|9}

78 M. Anzures-Garcia, M.J. Hornos, and P. Paderewski-Rodriguez

5 Conclusions and Future Work

In this paper, we have presented an architecture that reduces the time and effort
necessary for the development of collaborative applications with group awareness
mechanisms. This reduction is due to the fact that the application is built by
assembling every element of the architecture with a user interface (web page). By
means of this interface, a user can register a session and the users who will participate
in it, determine the type of session (even to define a synchronous session as
persistent), establish how collaborative work will be organized (by means of the
session management policies), define access rights to the shared resources according
to these policies, and invoke the collaborative application they want to work with. In
addition, each user interface (web page) shows the necessary information to provide
group awareness so that every user perceives a group context.

Our architecture allows collaborative applications to be developed with the
following characteristics:

= Flexibility: since the resulting application allows changes to be made to
the way in which users organize the groupwork. This is possible because
the architecture provides elements to change the group size, session
participants, session management policies, roles played by the user and
therefore his/her access rights to the shared resources.

= Extensibility: since the architecture allows functionalities to be added
according to the new requirements of the collaborative work. In order to
achieve this, it allows applications, components or tools to be added that are
wrapped as web services in the Application Layer. Extending the functionality
of the collaborative application is simple as we need only invoke the required
functionality from the list of available web services. As soon as the service has
been bound, a window is displayed showing the new application and the
information needed to carry out the collaborative work (such as the list of
users, each user’s roles with his/her respective access rights to the shared
resources, state of the session, etc.). This window can be closed when the
corresponding part of the collaborative work has finished.

We have studied and analyzed the main existing collaborative applications, and we
have ascertained that most have been developed for specific applications. This means
that in order to create a new application, we must start from scratch, something which
entails a great deal of effort for developers. There are other applications that support the
development of these applications, but none is perfect, e.g. some require extra effort in
order to customize the application, others are not platform independent or do not
provide consistency mechanisms. We have also analysed the state-of-the-art web
service-based collaborative applications and shown how they only solve specific
problems and do not provide an extensible and flexible architecture.

By way of future work, we intend to increase the number of shared access control
policies and to design the session management policies by means of models in order to
provide more flexible sessions, which are more suitable for the many ways in which
groupwork can be organized. We also want to establish notification mechanisms for the
exchange of documents by means of messages to reinforce group awareness and to
redefine authentication mechanisms using XML standards, such as XML-Encryption
[30] or XML-Signature [31].

Development of Extensible and Flexible Collaborative Applications 79

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

. Alonso, G., Casati, F., Kuno, H., and Machiraju, V.: Web Services: Concepts, Architectures

and Applications. Springer—Verlag, Berlin Heidelberg (2004).

Bulcao, R., Jardim, C., Camacho-Guerrero, J., and Pimentel, M.G.: A Web Service
Approach for Providing Context Information to CSCW Applications. Proc. of American
Web Congress (2004) 46-53.

Burridge, R.: Java Shared Data Toolkit User Guide version 2.0. Sun Microsystems,
JavaSoft Division (1999).

Calvary, G., Coutaz, J., and Nigay, L.: From Single-User Architectural Design to PAC*: A
Generic Software Architecture Model for CSCW. Proc. of CHI (1997) 242-249.

Chabert, A., Grossman, E., Jackson, L., Pietrowicz, S., and Seguin, C.: Java Object
Sharing in Habanero. Communications of the ACM, Vol. 41-6 (1998) 69-76.

Coutaz, J.: PAC-ing the Architecture of your User Interface. Proc. of the Fourth Eurogra-
phics Workshop on DSVIS. Sringer-Verlag (1997) 15-32.

Dewan, P.: Multiuser Architectures. Proc. of the IFIP TC2/WG2.7 Working Conference
on Engineering for Human-Computer Interaction (1995) 15-32.

Ellis, C.A., Gibas, S.J., and Rein, G.L.: Groupware: Some Issues and Experiences.
Communications of the ACM, Vol. 34-1 (1991) 39-58.

. Erl, T.: Service-Oriented Architecture: A Field Guide to Integrating XML and Web

Services. Prentice Hall. (2004).

Erl, T.: Service-Oriented Architecture: Concepts, Technology, and Design. Prentice Hall.
Crawfordsville Indiana (2005).

Fox, G., Wenjun, W., Ahmet, U., and Hasan, B.: A Web Services Framework for
Collaboration and Audio/Videoconferencing. Proc. of the International Multiconference in
Computer Science and Computer Engineering, Internet Computing (2002).

Fuentes, L., Pinto, M., Amor, M., and Jimenez, D.: CoopTEL: A Component-Aspect
Middleware Platform. Proc. of ACM/IFIP/USENIX Int. Middleware Conference (2003).
Garcia, P., and Gémez, A.: ANTS Framework for Cooperative Work Environments. IEEE
Computer Society Press, Vol. 36-3. Los Alamitos CA USA (2003) 56-62.

Graham, T.C.N., and Urnes, T.: Integrating Support for Temporal Media in to an
Architecture for Graphical User Interfaces. Proc. of the International Conference on
Software Engineering (ICSE). ACM Press, Boston USA (1997) 172-182.

Greiner, U., and Rahm, E.: Quality-Oriented Handling of Exceptions in Web Service
Based Cooperative Enterprise Application Integration. GITO-Verlag (2002) 11-18.
Goldberg A.: Smalltalk-80: The Interactive Programming Environment. Addison Wesley,
(1984).

Guerrero, L.A., and Fuller, D.: CLASS: A Computer Platform for the Development of
Education’s Collaborative Applications. Proc. of CRIWG (1997) 51-60.

Harrison, M., and Thimbleby, H. (eds.): Formal Methods in Human-Computer Interaction,
Cambridge University Press (1990).

Laurillau, Y., and Nigay, L.: Clover Architecture for Groupware. Proc. of the ACM
Conference on CSCW. New Orleans Louisiana USA (2002) 236-245.

Li, D., and Muntz, R.: COCA: Collaborative Objects Coordination Architecture. Proc. of
CSCW. ACM Press (1998) 179-188.

Ouyang, Y., Tang, M., Lin, J., and Dong, J.: Distributed Collaborative CAD System Based
on Web Service. Journal Zhejiang University Science, Vol. 5-5. (2004) 579-586.

Pan, Y., Duanging, X., Chun, C., and Ying, Z.: Using Web Services Implementing
Collaborative Design for CAD Systems. Proc. of Services Computing (2004) 475-478.

80

23.

24.

25.

26.

27.

28.

29.

30.

31.

M. Anzures-Garcia, M.J. Hornos, and P. Paderewski-Rodriguez

Patterson, J.F.: Taxonomy of Architectures for Synchronous Groupware Applications.
Proc. of the CSCW'94 Workshop on Software Architectures for Cooperative Systems, Vol.
15-3. ACM SIGOIS, Chapel Hill North Carolina (1994) 27-29.

Roseman, M., and Greenberg, S.: Building Realtime Groupware with GroupKit: A
Groupware ToolKit. ACM Trans. Computer-Human-Interaction, Vol. 3 (1996) 66-106.
Sangmi, L., Geoffrey, F., Sunghoon, K., Minjun, W., and Xiaohong, Q.: Ubiquitous
Access for Collaborative Information System Using SVG. SVG Open. Zurich, Switzerland
(2002).

Sangmi L., Sunghoon K., Geoffrey F., Kangseok K., and Sangyoon, O.: A Web Service
Approach to Universal Accessibility in Collaboration Services. Proc. of 1st International
Conference on Web Services. Las Vegas (2003).

Schuckmann, C., Kirchner, L., Schiimmer, J., and Haake, J.M.: Designing Object-Oriented
Synchronous Groupware with COAST. Proc. of CSCW (1996) 30-38.

Shaohua, L., Jun, W., Yinglong, M., and Yu, L.: Web Service Cooperation Ideology. Proc.
of IEEE/WIC/ACM International Conference on WI (2004) 20-24.

Woerner, J., and Woern, H.: Distributed and Secure Co-operative Engineering in Virtual
Plant Production. Proc. of Advanced Production Management Systems: Collaborative
Systems for Production Management (2002) 175-187.

XML-Encryption Working Group. World Wide Web Consortium (2001).
http://www.w3.org/Encryption/2001/

XML-Signature Working Group. Internet Engineering Task Force (IETF) and World Wide
Web Consortium (2002). http://www.w3.org/TR/xmldsig-core/

Build, Configuration, Integration and Testing
Tools for Large Software Projects: ETICS

Marc-Elian Bégin?, Guillermo Diez-Andino Sancho?, Alberto Di Me'glioz7
Enrico Ferro!, Elisabetta Ronchieri''*, Matteo Selmi!, and Marian Zurek?

UINFN, Ttaly
2 CERN, Switzerland

elisabetta.ronchieri@cnaf.infn.it

Abstract. Software development within geographically dispersed and
multi-institutional projects faces challenges in the domain of validation
and quality assurance of software products. Experience in such projects,
especially in the area of Grid computing, has shown that the lack of ap-
propriate tools and procedures may cause high overall development costs
and delays in the deployment, development and maintenance of the soft-
ware. In this paper, we introduce ETICS, an integrated infrastructure for
the automated configuration, build and testing of Grid and distributed
software. The goal of the infrastructure is to provide a service for software
projects by integrating well-established procedures, tools and resources
in a coherent framework and adapting them to the special needs of dis-
tributed projects. A set of versatile tools and best-practice guidelines
for quality assurance implementation are also provided to maximize the
project’s chances of delivering reliable and interoperable software.

1 Introduction

Several large-scale open-source software projects have to deal with the need to
organize complex software life cycle management infrastructures and processes in
order to guarantee required levels of quality, interoperability and maintainability.
Often these projects have to face resource, skill, time and budget constraints that
may lead to the risk of releasing software difficult to deploy, maintain, under-
stand and integrate with other applications. Fixed-term research projects such
as DILIGENT [I], [2] and EGEE [3],] have to focus on developing software
of increasing functionality through their lifetime, but cannot always guarantee
that the software will still be accessible, maintainable and documented after
the conclusion of their mandate. In such distributed development environments,
ensuring that components developed by different developers, in different lan-
guages, on different platforms and with non homogeneous tools and processes
is often a daunting challenge that may lead to software difficult to manage.
Furthermore permanent projects such as QUATTOR [5] suffer from the lack of
well-defined build procedures and this makes it difficult for other institutes to

* Corresponding author.

N. Guelfi and D. Buchs (Eds.): RISE 2006, LNCS 4401, pp. 81 2007.
© Springer-Verlag Berlin Heidelberg 2007

82 M.-E. Bégin et al.

adopt them. Under the pressure of short deadlines and large requirement sets,
project managers may have to face the decision of cutting testing and quality
assurance verifications, which can be a cause of delaying the release or impair-
ing the usability of the software because of the excessive number of undetected
problems. Even when functional tests are performed, the nature itself of complex
middleware, such as that developed for the computational Gri, render costly
the provision of adequate hardware and network resources. When middleware
and applications are deployed on tests or certification testbeds a lot of time is
usually spent trying to make middleware suites and applications to interoperate
due to the different configuration assumptions and different versions of common
libraries.

In this work, we introduce ETICS, an integrated infrastructure for the au-
tomated build, configuration, integration and testing (BCIT) of software [6],
specifying its requirements and architecture. ETICS aims to support such re-
search and development initiatives by integrating existing procedures, tools and
resources in a coherent infrastructure, additionally providing an intuitive access
point through a Web portal and a professionally-managed, multi-platform ca-
pability based on Grid technologies [7]. Consequently, developers and software
managers will be able to integrate their code, libraries and application, validate
the code against standard guidelines, run extensive automated tests and bench-
marks, produce reports and improve the overall quality of the software. ETTCS
goal is not to develop new software but to adapt and integrate already exist-
ing capabilities, chiefly open source, providing other research projects with the
possibility of focusing their efforts in their specific research field and to avoid
wasting time and resources in such required, but expensive, activity. Neverthe-
less, ETICS also adds any missing features, such as a consistent schema in order
to configure, build and test software projects with different characteristics (e.g.,
platforms, development languages).

This paper is organized as follows. Section 2] describes the requirements of
the system, whilst Section [B] documents the related work, explaining what ET-
ICS can add to the state of the art. Section [details the certification process.
Section [l describes the architecture. Section [l presents a rigorous definition of
the basic concepts, whilst Section [0 reports useful user’s operations supported
in the ETICS infrastructure. Few use cases are provided in Section [§ Section
reports the conclusion and future activities.

2 Requirements for the Design of the BCIT Framework

In this section, we describe the requirements for the design of the build, config-
uration, integration and testing framework for distributed software. First of all,
it is fundamental to establish an international and well-managed capability for
software configuration, integration, testing and benchmarking for the scientific
community (for what concerns the software configuration in a complex testbed,

! Computational Grid provides a set of services that allow a widely distributed col-
lection of resources to be tied together into a computing framework.

Build, Configuration, Integration and Testing Tools 83

it is of major importance to keep the configuration as simple as possible). Sec-
ondly, it is also important to deploy, and if necessary to adapt, engineering tools
and support infrastructures developed by other projects such as EGEE, NMI [§],
LCG [9] and other open-source or industrial entities and organize them into a
coherent easy-to-use set of on-line tools. The creation of a repository of libraries
is also a requirement in order to allow the ETICS framework to link against
and consequently to validate their software in different configuration conditions.
A distributed infrastructure of computing and storage resource to support the
software in different configuration conditions is a crucial ETICS objective. Col-
lecting, organizing and publishing middleware and application configuration in-
formation is another requirement in order to facilitate interoperability analysis
at the early stages of development and implementation. The collection from the
scientific community of sets of test suites is necessary to help users to validate
deployed middleware, applications and their products for specific uses. Another
requirement is to increase the awareness of the need for high-quality standards
in the production of software and to promote the identification of common qual-
ity guidelines and principles and their application to software production in
open-source academic and research organization. The international collabora-
tion between research projects and establishment has to be promoted and a
virtual community in the field of software engineering has to be established in
order to contribute to the development of standards and advancement in the art
of quality assurance.

Via the ETICS service, users can explore meaningful metrics pertaining to
the quality of their software. Furthermore, the ETICS service also offer a repos-
itory of ready-built components, services and plug-ins, with a published-quality
level. The quality metrics provided by the ETICS services and available for each
package in the repository help guide the user in selecting reliable software de-
pendencies. Finally, the repository also contain pre-built packages for specific
hardware platforms and operating systems, which will help the developers to as-
sess the platform independence of their entire service, including each and every
dependency the service is relying on.

The task of building Grid applications that run reliably and efficiently on Grid
resources remains extremely difficult. In general those applications consist of a
heterogeneous collection of sub-applications that are handled together in order
to form a large distributed application. From the perspective of Grid application
developers, the ETICS service should allow them to automate their build and test
procedures, and to verify that all the pieces work together. Developers should not
be equipped with a programming framework in order to have details of most Grid
services. In addition they should work by using a consistent, non-complex model
in which their application could be composed from well tested, reliable sub-units.
Most Grid and distributed software projects invest in a build and test system
in order to build and test automatically their software and monitor key quality
indicators. ETICS takes requirements from many Grid and distributed software
projects (e.g., QUATTOR, EGEE, DILIGENT) and offers a generic yet powerful
solution for building and testing software. Building software via such a systematic

84 M.-E. Bégin et al.

process can provide a rich pool of published quality components, services and
plugins, which the next generation of Grid and distributed applications could be
based on and composed of.

ETICS aims to establish a distributed and managed infrastructure providing
common software engineering tools and processes. Therefore, integrated pools of
resources also have to be maintained and managed for running automated builds
and test suites. For this reason, a centre of exchange for software configuration
information and documentation is required in order to allow projects to best
organize their software. In addition, a repository of standard benchmarks and
interoperability information that new projects can use to validate their products
has to be defined.

To fulfill ETICS requirements, firstly, it is fundamental to identify a num-
ber of existing resource pools with adequate network, hardware and software
capabilities that can be federated to run builds and test suites. The next step
consists of promoting the definition and adoption of common configuration man-
agement and quality assurance guidelines to foster software interoperability and
reliability. This activity lead to the establishment of the ” quality certificate” for
the software developed by the research community. Then, it is mandatory to
run a professionally managed service in support of software projects and offload
them from the need of setting up dedicated infrastructures and help improve the
overall quality of the software. Finally, it is required to set up a repository of
software configuration information, documentation, benchmarking data and ref-
erence test cases that projects can use to validate their products and ultimately
produce increasingly better and more efficient software. The ETICS services
must be rapidly and efficiently accessible by users from different locations and
platforms. A Web-based portal is therefore considered to be the right choice as
a means of accessing the services and resources provided by ETICS.

3 Related Work

In the area of software development management, we consider Gump and Maven
[10] sponsored by the Apache software Foundation [I1]. Gump is a distributed
software build service, whilst Maven is a software build and project management
tool. These projects are often referred as ”social experiments”, since they try to
address not only the technical problems but also the issues that arise when soft-
ware is developed by several communities. Gump supports the build of software
for a particular technology (i.e., Java), and does not support testing tools.
Tools that provide customizable portals for software project management are
also available such as Sourceforge [12], Savannah [13] and GForce [14]. Sourceforge
is provided as a service, whilst Savannah (like GForge) is supplied as a software
package that can be installed and customized by users. Moreover, GForge auto-
matically creates a repository and controls access to it depending on the role set-
tings of the project. These projects give a Web-based portal that users can access
to register their software, track its evolution and interact with the user commu-
nity. They do not provide, for example, automated software build and testing.

Build, Configuration, Integration and Testing Tools 85

ETICS, compared with Gump, integrates in a single framework of build, test-
ing and reporting functionality. It also gives the provision of software engineering
functionalities such as the software build and testing, compared with Sourceforge,
Savannah and GForge. Within EGEE, the gLite Configuration and Build System
[15], [16] was set up to build automatically the software and support the integra-
tion activities. OMII Europe [17] (acronym for Open Middleware Infrastructure
Institute) identifies, proposes and promotes middleware and applications that
want to improve their quality and be part of a coherent development effort at
pan-European and international level. ETICS profits from the glite experience
to lay the foundations of a more general configuration, integration and build
system to match the needs of distributed software development. OMII and ET-
ICS projects are to complement each other. The latter, in fact, can provide the
underlying development process and quality assurance facility.

4 Quality Assurance Certification Process

As with other major issues, the ETICS project must deliver a feasibility study
for the implementation of a Quality Assurance (QA) certification process for
Grid and distributed software projects which want to adopt a quality label and
promote their products. In fact, software products need to be certified in order
for them to be accepted by other projects and user communities. In most cases,
it is very difficult to assess the quality of software and most standards address
the problem by specifying various statistical methods of calculating the defect
density of the software or by setting the following equation: quality of the
software = quality of the company/institute. Although such metrics [I8]
are certainly of great importance in the evaluation of software quality, there are
no agreed definitions of such concepts based on usability or suitability principles.
Such a task is of great difficulty and the ETICS infrastructure is in a strategic
position to participate in and promote discussions on the definition of more
qualitative rather than quantitative standards. For example, “is the software
good enough for what I need to do?”, rather than, “it has passed a set of reference
tests?”, or “it has less than 0.9 defects per thousands lines of code”.

Some useful metrics are: 1. the number of implemented requirements based on
the requirements that can be tracked in a project tracker. Since the percentage
is relative to the number of requirements in the tracker, which is supposed to in-
crease in time, a small increase in percentage may still imply a large number of
implemented requirements. This metric must therefore be accompanied also by
the real number of received and implemented requirements; 2. defect and usage
correlation: this is a metrics that tries to correlate the usage of a package or a sys-
tem (e.g., number of users, number of days between updates, number of packages
depending or using this package, number of bugs per package, trends) with the
number of defects found before releasing; 3. the number of lines, classes, methods
counts and stats fragility, complexity, hierarchy size. The idea is to demonstrate
in practice that the application of proper software engineering and QA techniques
has a measurable impact on the final quality and usability of the software.

86 M.-E. Bégin et al.

The ETICS study is a full assessment of what procedures, tools and rules
maximize the project’s chances of delivering reliable [19], interoperable software
based on the real data collected in two years of activity. ETICS wants to propose
the results of this study as the starting point of a coordinated QA Certification
activity in the context of a more permanent Grid infrastructure initiative. The
investigation is conducted using as benchmarks the software developed by some
of the ETICS partners in other projects. Currently, the EGEE-gLite software,
the DILIGENT software and the VDT [20] software use the ETICS service.
Additional software packages (e.g., QUATTOR) have already been selected in
order to start using ETICS services and to be deployed by using ETICS infras-
tructure. The ETICS system performs both static and dynamic analysis: the
former consists of evaluating the adherence to user defined coding conventions
and the source code, and making custom analysis (e.g., IPv6 compliance); the
latter consists of for example evaluating the code coverage for unit and system
tests, compliance tests, stress tests, performance tests.

5 ETICS System Architecture

The ETICS system architecture is based on the requirements described in Sec-
tion @l It is split into several entities, as shown on Figure [l Web Service; Web
Application; command line interfaces; data model and storage; job execution
engine. The Data Model and Storage is designed to organize a software project
by using the high-level entities such as the project structure, the build config-
uration, the security information, the build and job result set. The data model
describes explicitly the objects and the relationships between objects. In addi-
tion, the model allows representing the results of running a build and test job in
a way that can be consumed by the Web Application to generate reports. The

Web Application
Web Service

= =

£ T =

Report Project Build/Test

DB DB Artefacts NMI Scheduler

Via command /
Line tools

Clients

NMI Client
Wrapper

Fig. 1. The ETICS System Architecture

Build, Configuration, Integration and Testing Tools 87

data storage back-end holds the persisted data model and supports different de-
ployment models. For example, as the number of requests increases, with more
users using the service, a potential use cases require database to be hosted on
different machines via a load balancing algorithm and/or several instances of the
Web Service to be deployed in parallel on multiple hosts. The Web Service is
the entity providing business logic for the entire service, used by both the client
and the Web Application. An important goal of the Web Service is to abstract
the data storage backend, which holds the persisted version of the ETICS data
model. For simplicity and better scalability, the Web Service is stateless. This
means that it does not use a stateful Web Service paradigm, such as Web Services
Resource Framework (WSRF'), which still has to prove itself in high-availability
applications. The Web Application is responsible for allowing the user to view,
monitor, configure and execute automated builds and tests. It is stateful in order
to maintain the security credentials and session information, which improves the
ergonomics of the interface. The Command Line Interfaces provide a similar
functionality as the Web Application and makes use of the same Web Service
interface for simplicity and symmetry (i.e., they have some tasks in common).
The command line interfaces can be used directly by the user on local resources
(e.g., a developer machine). Furthermore, the same client is used in an almost
identical context by the NMI build and test framework. This similarity is crucial
to avoid context switching between local and remote builds/ testsE, which would
reduce the usability and reliability of the system. The Job Ezxecution Engine
allows the ETICS service to offer the user the automation of builds and tests,
possibly on a regular schedule, on a large set of different resources and platforms.
The engine is provided by the NMI build and test framework, which builds on
top of Condor [21], a specialized workload management system for computing
intensive jobs.

5.1 Security in ETICS

The underlying security infrastructure is based on digital certificates. Both the
Web Application and the client authenticate themselves using standard x.509
[22] certificates. Users are modeled as fully qualified 2.509 principal names as
they appear in standard z.509-compliant certificates. The Web Service verifies
the user certificate Distinguished Name (DN) in the database of existing users
involved in a project, and it allows or denies the operation based on the roles
(summarized in Figure 2]) assigned to the users. From that point onwards, the
Web Service uses a service certificate to interact with other internal services. The
access control list on the persisted data will be enforced by the Web Service.
The identified roles are described in the following list: Administrator (A)
is a super user enabled to perform all the operations allowed in the ETICS

2 A local build/test is performed, for instance, by the developer on his/her personal
workstation whenever he/she wants. A remote build/test is submitted, for instance,
by the developer on a remote system that will process it when possible (i.e., the
developer does not have a total control of the resources that may be used by other
users).

88 M.-E. Bégin et al.

G * D * MA A

R

v

Fig. 2. The Hierarchy of Roles. Figure has to be read from left to right. The role G is
the lowest important respect to the role A. The arrow points out that the destination
role can perform the same action of the source one.

infrastructure; Module Administrator (MA) is responsible for handling the
project by using the ETICS services; Developer (D) works on the implemen-
tation of the software; Integrator (I) runs software verifying if it works and
register packages; Tester (T) submits and stores test; Release Manager (RM) is
responsible for defining the release candidate of the project, publishing packages,
creating release notes and other documentation; Guest (G) has only read access.

6 A Rigorous Definition of the Basic Concepts

In this section we introduce in a rigorous way the basic concepts and the defini-
tions of the ETICS data model. The schema has been designed to model a generic
software project, its internal structure and its relationships and the operations
required to build and test such a project. The model is inspired by the Common
Information Model (CIM) Application model [23] and the Object Management
Group (OMG)’s Model Driven Architecture [24], but it adds definitions for the
operations of software construction (build) and verification (testing) which are
missing from the above mentioned models. The ETICS data model is composed
by several elements which can be organized in software structure, build configu-
ration and security information.

6.1 Software Structure Definitions

We provide the software structure definitions, characterized by the concepts of
component, subsystem and project. We start by defining the concept of com-
ponent that is different from the same definition used in the object-oriented
programming;:

Definition 1. A component ¢ is defined as a collection of objects providing a
well-defined more limited functionality within the system architecture.

A proper understanding of this definition requires investigation of the con-
cepts of object and functionality. The former can be at least a source file, or a

Build, Configuration, Integration and Testing Tools 89

configuration file or a document, whilst the latter is the sum or any aspect of
what a software application can do for a usetf]. The software application can be
formalized in the following way:

Definition 2. A software application SA is a set of non-ordered components SA
={c1, 2, .vy e} with m € N.

The set of all subset of SA is called the power set of SA and specified as P(SA).
Taking into consideration the previous two definitions, we introduce the sub-
system, a logical portions of the overall architecture in more specific subsets of
functionalities, as follows:

Definition 3. A subsystem SS is a non empty subset of the software application,
defined as a set of non-ordered components SS = {cs1, Cs2, ..., Csn}, where cg;
(si=1, ...,n with n € N) are components defined in SA.

Definition 4. Let SSS be a set of subsystems SSS = {ss1, ssa, ..., ss,} where
ss; (i=1, ...,n withn € N) are subsystems defined in SA, so that SSS C P (SA).

For the sake of simplicity in the definition of subsystem we neglect the fact that it
could be composed not only of components but also of other subsystems. Taking
into account the component, software application and subsystem definition, we
formalize the project, a complete software package providing well-defined high
level functionalities according to predefined user requirements, as follows:

Definition 5. A project P is a non empty subset of subsystems and components
of the software application, defined as a set of non-ordered elements P = {p: p

€ SSSV p e SA}.

Definition 6. Let PRJ be the set of projects PRJ = {prj1, prjz, ..., prjn} where
prj; (j=1, ...,h with h € N) are projects defined in SA, so that PRJ C P(SA).

For instance, a project can be composed of one or more components, of one or
more subsystems, of a combination of components and subsystems.

Definition 7. A module m is a generic entity, where entity can be a project, a
subsystem or a component. Let M e the set of modules M = {mq, ma, ..., m,}
where m; (i = 1, ...,n with n € N) are modules defined in M and M = {PRJ U
SSS U SA}.

6.2 Build Configuration Definitions

In this section we provide the build configuration definitions, composed of plat-
form, resource, commands, and configuration concepts. An example of platform
is sle4 86 64 gce345 where slcj is the operating system, 86 6/ is the machine
architecture and gec345 is the compiler.

! Szyperski [25] gives the definition of software component, commonly used in the
object-oriented programming.

90 M.-E. Bégin et al.

Definition 8. Let OS be the set of operating systems. Let CMP the set of com-
pilers. Finally, let MA be the set of machine architectures. PLT = OS x CMP
X MA is a set of platforms.

Definition 9. Let R be the set of resources R = {r1, ra, ..., rp} with b € N.

We now define the applications f and g. The former enables to define the concept
that it is possible to have several resources with the same platform, and exactly
one platform for each resource. The latter enables to define the concept that a
project runs on several resources, and a resource can run more than one projects.

Definition 10. The application f: R — PLT from R to PLT is a correspondence
between R and PLT such that for each resource r € R, 3 exactly one platform
plt € PLT such that f(r) = plt.

We observe that given the resources r; and r, with j # k (i.e., r; # i) and r;,
rr € R and the platform plt € PLT, it could be that f(r;) = ptf and f(ry) =
ptf, so that the application f is not injective.

Definition 11. Consider the application g : R x PRJ — {0, 1} such that

1 if prj runs on r,

0 otherwise.

=]

We observe that given:

— the resources r; and r, with j # k (ie., r; # rg) and 7;, 7 € R and the
project prj € PRJ, it could be that g(r;,prj) =1 and g(rg,prj) = 1;

— the projects prj; and prji with j # k (i.e., prj; # prjx) and prj;, prjx € PRJ
and the resource r € R, it could be that g(r,prj;) =1 and g(r, prjx) = 1.

EV environment variables are a set of dynamic values that can affect the way
running processes will behave.

Definition 12. A configuration conf collects some information needed to down-
load, build and test a subset of software for each supported platform. Let CONF
be the set of configurations.

The PRP property is a set of custom attributes that a configuration requires at
build-time such as compilation flags.

Definition 13. Let VCSC be the set of version control system commands. Let
BC be the set of build commands. Finally, let TC be the set of test commands.
CMN = VCSC x BC x TC is a set of commands.

Subversion [26] and Control Version System [27] are examples of version control
systems. An example of version control system command is cvs co component. The
build commands are used to configure, build, package, create documentation, re-
move generated build files (e.g., make clean, make doc), whilst the test commands
are involved in running, for example, specialized unit test, coverage test, coding
conventions test, functional test, stress test and performance test. We introduce
the formal definition of relationship between platform and configuration:

Build, Configuration, Integration and Testing Tools 91

Definition 14. Consider the case h : CONF x PLT — CMN x EV x PRP
such that
(emmn, ev,prp) if plt is defined for conf,
(emmng, ev,prp) if plt is not defined for conf
h(conf,plt) = but plty is associated with conf,
0 if plt is not defined for conf
and plty is not associated with conf,

where plty is the default platform, and cmng is the default command and { CMN
x EV x PRP} | {o}.

Definition 15. Consider the case k: CONF x PLT x M — {0, 1} such that

1 if m is defined for conf and m,

0 otherwise

k(conf,plt,m) = {
where m represents the dependency by which conf depends on.

We formalize the relationship between modules and configurations as follows:

Definition 16. The application w: CONF — M from CONF to M is a corre-
spondence between CONF and M such that for each configuration conf € CONF,
3 ezactly one module m € M such that w(conf) = m.

We observe that a module can have more than one configuration.

6.3 Security Information Definitions

Finally, we provide definitions for security information. Let U be the set of users.
Let RL be the set of roles RL={A, MA, D, I, T, RM, G}. We now define four
applications v, 2, t, ¢ that enables a user to act on a configuration, project,
subsystem, and component respectively with a specific role.

Definition 17. Consider the case v: U x RL x CONF — {0, 1} such that

1 if the user u has the role rl for the configuration conf

v(u,rl,conf) = {

0 otherwise.
Definition 18. Consider the case z: U x RL x PRJ — {0, 1} such that

1 if the user u has the role rl for the project prj
0 otherwise.

z(u,rl,prj) = {

Definition 19. Consider the case t: U x RL x 8§55 — {0, 1} such that

1 if the user u has the role rl for the subsystem ss

0 otherwise.

t(u,rl,ss) = {

92 M.-E. Bégin et al.

Definition 20. Consider the case q: U x RL x SA — {0, 1} such that

1 if the user u has the role rl for the component sa

0 otherwise.

q(u,rl, sa) = {

7 Supported Operations

The operations supported by the existing ETICS implementation are classified
in two main categories: read only and edit. The former one allows users to get
information about software, build it and test it, whilst the latter one allows users
to interact with ETICS services, such as data storage. In this section we provide
more details on the set of the read only and edit categories that are the most
meaningful for users, through two list of operations that are respectively able for
instance to build software and to support different actions on the ETICS data
elements. Table [Tl describes the type of the edit operations and their meanings.

Get a Project(prj). This operation gets information about the project prj.
Prereq: The project prj € PRJ.
Result: prj is returned back to the user.

Checkout a Configuration(conf). This operation checkouts the configuration
conf.
Prereq: The operation Get a Project(prj) has to be performed with success
and the configuration conf € CONF.
Result: conf with its dependencies and subset of software are returned back
to the user.

Build a Configuration(conf). This operation builds the configuration conf.
Prereq: The operation Checkout a configuration(conf) has to be performed
with success.

Result: The subset of software associated to that conf is built.

Test a Configuration(conf). This operation tests the configuration conf.
Prereq: The operation Checkout a configuration(conf) has to be performed
with success.

Result: The subset of software associated to that conf is tested.

Add a User(a). This operation adds a new user a.
Prereq: The user v € U who performs this operation has the role A € RL.
Result: a € U.

Remove a User(a). This operation remove the user a.
Prereq: The user v € U who performs this operation has the role A €
RL, a € U and the applications v(a,rl, plt) = z(a,rl,plt) = t(a,rl,plt) =
q(a,rl,plt) =0,V rl € RL and plt € PLT.
Result: a ¢ U.

Build, Configuration, Integration and Testing Tools 93

Table 1. Type of edit operations

Operations Meaning

add insert new element in the ETICS data model

modify change some element parameters in the ETICS data model
remove delete the element in the ETICS data model

clone copy an element of the ETICS data model

prepare prepare a template file with element parameters

Add a Platform(plt). This operation adds a new platform plt.
Prereq: The user v € U who performs this operation has the role A € RL.
Result: plt € PLT.

Modify a Platform(plt). This operation modifies the platform plt.
Prereq: The user u € U who performs this operation has the role A € RL,
and plt € PLT.
Result: plt € PLT.

Remove a Platform(plt). This operation removes the platform plt.
Prereq: The user u € U who performs this operation has the role A € RL,
plt € PLT, and the applications h(conf,plt) = v(b,rl, plt) = z(b,rl, plt) =
t(b,rl, plt) = q(b,rl,plt) = 0,V conf € CONF, b € U and rl € RL.
Result: pit ¢ PLT.

Add a Resource(r). This operation adds a new resource 7.
Prereq: The user v € U who performs this operation has the role A € RL.
Result: 7 € R.

Modify a Resource(r). This operation modifies the resource r.
Prereq: The user u € U who performs this operation has the role A € RL,
and r € R.
Result: 7 € R.

Remove a Resource(r). This operation removes the resource r.
Prereq: The user u € U who performs this operation has the role A € RL,
r € R and the application g(r,plt) =0,V plt € PLT.
Result: r ¢ R.

Add a Project(p). This operation adds a new project p. It also associates to
p a configuration conf.
Prereq: The user v € U who performs this operation has the role A € RL.
Result: p € PRJ and conf € CONF.

Modify a Project(p). This operation modifies the project p.
Prereq: The user u € U who performs this operation has the role A € RL,
and p € PRJ.
Result: p € PRJ.

94 M.-E. Bégin et al.

Remove a Project(p). This operation removes the project p. It also removes
all its configurations conf;, i=1,...,n, n € N.
Prereq: The user u € U who performs this operation has the role A € RL,
and p € PRJ.
Result: p ¢ PRJ, and conf; ¢ CONF, i=1,..n, n € N.

Add a Module(m). This operation adds a new module m. It also associates
to m a configuration conf.
Prereq: The user v € U who performs this operation has either the role A
or the role MA with A, MA € RL.
Result: m € {M \ PRJ} and conf € CONF.

Modify a Module(m). This operation modifies the module m.
Prereq: The user v € U who performs this operation has either the role A
or the role MA with A, MA € RL.
Result: m € {M \ PRJ}.

Remove a Module(m). This operation removes the module m. It also removes
all its configurations conf;, i=1,...,n, n € N.
Prereq: The user v € U who performs this operation has either the role A
or the role MA with A, MA € RL, and the application k(conf, plt,m) = 0,
V conf € CONF and plt € PLT .
Result: m ¢ M, and conf; ¢ CONF, i=1,..n, n € N.

Add a Configuration(m, conf). This operation adds a new configuration
conf to the module m.

Prereq: The user v € U who performs this operation has either the role A
or the role MA or the role D with A, MA, D € RL, and m € M.
Result: conf € CONF.

Modify a Configuration(m, conf). This operation modifies the configuration
conf of the module m. It also associates to conf, if there is at least one plt for
that conf, environment ev, property prp, command cmn, dependency.

Prereq: The user v € U who performs this operation has either the role A
or the role MA or the role D with A, MA, D € RL, m € M, and conf €
CONF.

Result: conf € CONF, and if 3 at least one plt in PLT for conf, cmn €
CMN, en € EV and prp € PRP.

Remove a Configuration(m, conf). This operation removes the configura-
tion conf of the module m. It also removes all its environments ev;, proper-
ties prj, commands cmny,, i=1,...,n, n € N, j=1,....m, m € N and h=1,...,c,
ceN.

Prereq: The user v € U who performs this operation has either the role A
or the role MA or the role D with A, MA, D € RL, and the application
k(conf,plt,m) =0,V m € M.

Result: conf ¢ CONF, and ev; ¢ EV, i=1,...n,n € N, prp; ¢ EV, j=1,...n,
n €N, and emny, ¢ EV, h=1,..n, n € N,

Build, Configuration, Integration and Testing Tools 95

8 Use Cases

A number of use cases have been identified in the framework of the EGEE, DILI-
GENT and VDT projects. The selection of user community applications that are
willing to start using ETICS from the very beginning is an important asset to
ETICS in order to gather feedback on the impact and value of the proposed
service on the entire project lifecycle. Some of the use cases are: building and
testing software locally and remotely by using both the Web Application and the
Command Line Interfaces. In addition to perform the remote building and test-
ing ETICS interacts with NMI framework; register resources as public or private.
This means users can steer their build and test jobs to their private resources, or
add resources in the public pool, in order to share them with other ETICS users;
download the source and build a patched package by using different ways: source
tarballs, source packages and source rpms, checked out source against checked
out binaries: build everything from source; parallel build of software on different
platforms and automatic distribution of the packages in different formats (e.g.,
tarballs, rpms, and debs).

9 Conclusion

In summary, we described how ETICS performs build, configuration, integration
and test for Grid and distributed software projects. Requirements for designing
the service were also described, taking into account the perspective of application
developers and the needs of user communities. We mentioned other systems and
products used for managing software development such as Gump and Maven; we
briefly talked about projects interested in providing customizable portals for soft-
ware project management such as Sourceforce and Savannah, and also hinted to
other similar initiatives involved in improving the quality of Grid middleware such
as OMII Europe, and configuring and build code such as the EGEE gLite Config-
uration and Build System. The ETICS architecture was explained, together with
the formalization of the basic concepts of the ETICS data model and of the edit
operations, that belong to the most meaningful category of operations.

Using the valuable feedback from DILIGENT, EGEE, QUATTOR and VDT
we will improve ETTICS expanding the number and type of metrics and collected
data. Future work will include investigation of hardware virtualisation. In par-
ticular, the possibility of instantiating on-demand virtual machines tailored to
match job requirements is seen as a powerful tool to introduce flexibility and
strict reproducibility in the system. In addition, it may help overcome security
concerns that arise when test jobs require running as root or Administrator on
the target node. An additional area of investigation is the co-scheduling of mul-
tiple test jobs onto separate resources. Of particular interest is the case of jobs
with dependencies on the availability of external services. In this case, the sys-
tem should be able to pause a job, deploy the required services, propagate the
relevant configuration information to the paused job and resume it, cleaning all
resources after the execution of the job. Again the use of virtualisation may help
in this task.

96

M.-E. Bégin et al.

Acknowledgement

We would like to thank colleagues from the ETICS project, Peter Couvares,
Paolo Fabriani, Istvan Forgacs, Anatoly Karp, Andrea Manieri, and Cristina
Vistoli, who have provided useful suggestions to complete this paper. This work is
partially funded by the European Commission under contract number INFSOM-
RI-026753.

References

10.

11.
12.
13.
14.
15.

16.

17.
18.

. Diligent - A Digital Library Infrastracture on Grid ENabled Technology,

http://diligentproject.org/.

. D. Castelli and L. Candela and P. Pagano, and M. Simi, DILIGENT: a DL in-

frastructure for supporting joint research, In Proceedings of 2nd IEEE-CS Inter-
national Symposium Global Data Interoperability, IEEE Computer Society, pages
56-59, 2005.

EGEE Middleware Architecture, August, 2004, https://edms.cern.ch/file/
476451/1.0/architecture.pdf.

F. Gagliardi, The EGEE European Grid Infrastructure Project, In Lecture Notes
in Computer Science, volume 3402, pages 194-203, Jan, 2005.

R. A. Garca Leiva, M. Barroso Lopez, G. Cancio Meli, B. Chardi Marco, L. Cons, P.
Poznanski, A. Washbrook, E. Ferro and A. Holt, Quattor: Tools and Techniques for
the Configuration, Installation and Management of Large-Scale Grid Computing
Fabrics, In Journal of Grid Computing, Vol 2, N. 4, pages: 313-322, December 2004.
M. Fewster, and D. Graham, Software Test Automation, Addison-Wesley, 1999.
B. Allcock, I. Foster, V. Nefedova, A. Chervenak, E. Deelman, C. Kesselman, J.
Lee, A. Sim, A. Shoshani, B. Drach, and D. Williams, High-performance remote
access to climate simulation data: A challenge problem for data Grid technologies.
In Proceedings of SC2001 Conference, Denver, CO, November 2001.

NSF Middleware Initiative, http://www.nsf-middleware.orgl

WorldWide LHC Computing Grid - Distributed Production Environment for
Physics Data Processing, http://lcg.web.cern.ch/LCG/.

V. Massol, and T. O’Brien, Maven: A Developer’s Notebook, O’Reilly Media, Inc.,
1 Edition, June 2005.

The Apache Software Foundation, http://www.apache.org/|

The Sourceforge Home, http://sourceforge.net/.

The Savannah Home, http://savannah.nongnu.org/.

GForge helps you manage the entire development life cycle, http://gforge.org/.
A. Di Meglio, Developers’ Guide For the gLite EGEE Middleware,
https://edms.cern.ch/file/468700/0.7/.

A. Di Meglio and J. Flammer and R. Harakaly and M. Zurek, and E. Ronchieri,
A Pattern-Based Continuous Integration Framework For Distributed EGEE Grid
Middleware Are Development, In Proceedings of Computing in High Energy and
Nuclear Physics (CHEP) 2004, Interlaken, Switzerland, volume 1, pages 579-582,
27 September - 1 October, 2004.

OMII-Europe Introduction, http://www.omii-europe.com/|

S. H. Kan, Metrics and Models in Software Quality Engineering, II Edition,
Addison-Wesley Professional, 2002.

http://diligentproject.org/
https://edms.cern.ch/file/476451/1.0/architecture.pdf
https://edms.cern.ch/file/476451/1.0/architecture.pdf
http://www.nsf-middleware.org
http://lcg.web.cern.ch/LCG/
http://www.apache.org/
http://sourceforge.net/
http://savannah.nongnu.org/
http://gforge.org/
https://edms.cern.ch/file/468700/0.7/
http://www.omii-europe.com/

19.
20.
21.

22.

23.

24.
25.

26.

27.

Build, Configuration, Integration and Testing Tools 97

QSM (Model Explanation & Behaviors), http://www.qsm.com/reliability.pdf|
The Virtual Data Toolkits, http://vdt.cs.wisc.edu/|

D. Thain, T. Tannenbaum, and M. Livny, Distributed Computing in Practice:
The Condor Experience, Concurrency and Computation: Practice and Experience,
volume 17, No. 2-4, pages 323-356, February-April, 2005.

R. Housley, W. Ford, W. Polk, and D. Solo, Internet X.509 Public Key In-
frastructure - Certificate and CRL Profile, January 1999, http://www.ietf.org/
rfc/rfc2459.txt.

Common Information Model (CIM) Standards, http://www.dmtf.org/standsrds/
cim/.

The Architecture of Choice for a Changing World, http://www.omg.org/mda/.

C. Szyperski, Component Software: Beyond Object-Oriented Programming. 2nd ed.
Addison-Wesley Professional, Boston 2002.

B. Collins-Sussman, B. W. Fitzpatrick, and C. Michael Pilato, Version Control
with Subversion, http://svnbook.red-bean.com/en/1.1/index.html|

J. Vesperman, Essential CVS (Paperback), O’Reilly Media, Inc., 1 Edition, June
2003.

http://www.qsm.com/reliability.pdf
http://vdt.cs.wisc.edu/
http://www.ietf.org/rfc/rfc2459.txt
http://www.ietf.org/rfc/rfc2459.txt
http://www.dmtf.org/standsrds/cim/
http://www.dmtf.org/standsrds/cim/
http://www.omg.org/mda/
http://svnbook.red-bean.com/en/1.1/index.html

Architectural Verification of Black-Box
Component-Based Systems

Antonia Bertolino', Henry Muccini?, and Andrea Polini'

! Istituto di Scienza e Tecnologie della Informazione “Alessandro Faedo”
Consiglio Nazionale delle Ricerche
via Moruzzi, 1 — 56124 Pisa, Italy
{antonia.bertolino, andrea.polini}@isti.cnr.it
2 Dipartimento di Informatica,
University of L’Aquila
Via Vetoio, 1 - L’Aquila, Italy
muccini@di.univaq.it

Abstract. We introduce an original approach, which combines moni-
toring and model checking techniques into a comprehensive methodol-
ogy for the architectural verification of Component-based systems. The
approach works by first capturing the traces of execution via the in-
strumented middleware; then, the observed traces are reverse engineered
into Message Sequence Charts, which are then checked for compliance
to the Component-based Software Architecture, using a model checker.
The methodology has been conceived for being applied indifferently for
validating the system in house before deployment and for continuous val-
idation in the field following evolution. A case study for the first case is
here illustrated.

1 Introduction

Two antithetical approaches which emerge today for the verification of large
complex distributed systems are model-based and monitoring. These two ap-
proaches are generally used in different stages of the software life cycle, and
serve different purposes. The former enforces the rigorous derivation of a set
of test cases from the system model, and aims at validating before deployment
that the implemented system behaviour actually conforms to the modeled one.
The latter collects and analysis runtime data during system execution to identify
failures and to evaluate critical quality and performance attributes in the field.

In this paper we describe an original approach we are working on, which draws
from both model-based verification and monitoring concepts, and combines their
respective strengths into a comprehensive methodology for verification in a con-
tinuum between in-house and in the field. In particular we describe here how
the behaviour of a component assembly is validated against the corresponding
Software Architecture.

A Software Architecture (SA) provides high-level abstractions for representing
the structure, behavior, and key properties of complex software systems [12]. SA-
driven development assigns to the SA specification a central role in the software

N. Guelfi and D. Buchs (Eds.): RISE 2006, LNCS 4401, pp. 98 113] 2007.
© Springer-Verlag Berlin Heidelberg 2007

Architectural Verification of Black-Box Component-Based Systems 99

life cycle, both to the phase of design and integration, and to analysis and test-
ing activities. Most methodologies for SA-based analysis and testing generally
assume a model-driven approach, in which the SA specification constitutes the
reference model and the system is subject to a thorough and accurate validation
of the required architectural properties before being deployed.

Advances in SA have greatly contributed to the advent of the Component-
Based paradigm of development. In fact, the SA specification provides the blue-
print for developing systems by properly composing “pieces” of software against
it. A Component-Based Software System (CBS) can be roughly considered as an
assembly of reusable components, designed to meet the quality attributes iden-
tified during the architecting phase [9]. A component can be defined [20] as a
unit of composition, with contractually specified interfaces. In a CB approach, a
big challenge is posed by the scarce information that is generally available about
the components. Various approaches for testing CBSs have been recently pro-
posed spanning over a varying spectrum of assumptions made on the metadata
accompanying the component, which can be merely in form of pre- and post-
conditions, or even as detailed as state machines. However, such a paradigm
needs also to assume there is a time for validation before deployment; with the
fast and ceaseless increase of systems complexity and pervasiveness, and the
consequent emergence of dynamic global SAs, such a model need to be revised.

In antithesis to a proactive approach to testing such as model driven, sev-
eral proposal for monitoring, or passive testing, are today spreading. Referred to
with differing terminology, such as “monitoring”, “tracing”, and similar, what
this approach to verification foresees is to observe the system during execution
and to profile the obtained traces with different purposes. Hence, while in model-
based testing the system must be stimulated so to reproduce some predefined
behaviour, in monitoring the actual behaviour is observed and a posteriori anal-
ysed to see whether this conforms to desired properties. This prevents the burden
of reproducing preselected test sequences as in model driven testing; we adopt
the model-based approach in that we derive some architectural properties from
the specification that we want to verify, and we verify the collected traces against
these properties. In particular, for the latter purpose, we apply model-checking
techniques, by which we check that the CBS derived traces conforms with the
expected event sequences in the CBSA model.

The goal of such an approach is to ensure that the “core” of the implemented
system fulfills the SA expectations, as figuratively illustrated in Figure [T} so, for
instance, the approach can help to verify that by adding a new plugin compo-
nent to a given CBS, its overall behaviour does not deteriorate. In light of the
evolutionary properties of modern CBS, the same approach is meant to be used
both at development stage, and after deployment.

In the next two sections we provide an overview of the proposed approach,
and of related work. Then, in Sections @l and Bl we describe the monitoring and
model-checking steps, and in Section [we discuss the application of the approach
to a case study. Finally some conclusions of results reached so far are drawn in
Section [1

100 A. Bertolino, H. Muccini, and A. Polini

Conceptual System SA
components £
oY
Component-based User™ | %SR—@——O
Software -
. Conformance Analysis
Architecture via Testing, Model-

] checking and
Monitoring

COTS
comp onents \ ﬁ T~ Regression

Conformance Analysis

System Implementation

User —C o+

24 P

Component-based
Implementation

Fig. 1. Architectural Verification of Component-based Systems

2 Related Work

As discussed in the introduction of this paper, our approach wants to integrate,
in a novel approach, (model-based) verification applied at the architecture level,
monitoring applied during system execution and model-checking techniques cov-
ering implementation and software architectures. Much research has been con-
ducted in these areas, and main results are briefly surveyed in this section.

Monitoring and Black-Box Monitoring: Due to the complexity of understanding
and configuring modern complex systems, several different approaches to moni-
tor their functioning on-line have been recently proposed. For a recent compre-
hensive assessment of strategies and testing opportunities for profiling deployed
software we refer to [I0], while for a quite interesting approach that shares many
of the problems and goals with our approach we mention [I]. In the latter, the
authors however adopt a different solution, since they instrument the architec-
tural description, and not the middleware. Moreover, they require the developers
to define a set of rules used to analyse the traces. Another interesting approach
to derive execution traces using Aspect-Oriented Programming is presented in
[15]. However even in this case no analysis technique is proposed.

SA-based Model-Checking: Software Model-Checking [8] analyzes concurrent
systems behavior with respect to selected properties by specifying the system
through abstract modeling languages. Model-checking algorithms offer an ez-
haustive and automatic approach to completely analyze the system. When er-
rors are found, counterexamples are provided. Initial approaches for model-
checking at the architecture level have been provided by the Wright architectural

Architectural Verification of Black-Box Component-Based Systems 101

language [5] and the Tracta approach [I6]. More recently, Fujaba [3], Emilia [6],
and CHARMY [19] have been proposed. Fujaba is an approach tool supported for
real-time model-checking of component-based systems: the system structure is
modeled through UML component diagrams, the real-time behavior is modeled
by means of real-time statecharts (an extension to UML state diagrams), prop-
erties are specified in TCTL and the UPPAAL model-checker is used as the
real-time model checker engine. Amilia is an architectural description language
based on the stochastic process algebra EMPAgr: initially introduced for per-
formance analysis, it permits to apply symbolic model-checking. TwoTowers 5.1
is a software tool for the verification of AEmilia specifications. CHARMY [19] is
our proposal to model-check software architecture compliance to certain func-
tional temporal properties. The software architecture is specified according to
the CHARMY UML-based specification of software architecture. More details will
be provided in Section

Integration of analysis techniques: Integration of analysis techniques is a topic
which is recently receiving some attention in the software engineering community
(e.g., []). In [I7] the authors integrate testing and monitoring activities, both
applied over component-based systems. While testing is used to collect informa-
tion on components interaction, monitoring is successively employed to identify
anomalous interactions when components are added or modified in the original
system. More related to some of the authors experience [7], we recently integrated
model-checking and testing activities during the life-cycle, where model-checking
techniques have been used to validate the SA model conformance with respect
to selected properties, while testing techniques have been utilized to validate the
implementation conformance to the SA model.

3 Approach Overview

A big synergy relates CB development and SA (the latter being the model that
should lead the assembly of a set of components to form the required system):
when developing components, our focus is on identifying reusable entities, with
well defined interfaces and proved quality. When building component-based sys-
tems (CBS), we move our focus to assemble the components so to build a high-
quality system. When modeling the software architecture of a component-based
system (CBSA), our goal is to provide a high-level blueprint on how real compo-
nents are supposed to be assembled (according to styles and patterns, constraints,
and rules).

Therefore a CBSA specification plays a major role in validating the quality
of the assembly (even before the CBS components are developed or bought).
The main objective of the approach we propose is to verify the coordination
properties of components which are part of a CBS, against the specified CBSA.
The verification process we propose is composed by different steps, where:

CBSA Specification for Analysis: The CBSA of the system under analysis is spec-
ified in terms of a structural model (which describes components, connectors,

102 A. Bertolino, H. Muccini, and A. Polini

interfaces, and ports) and a behavioral model (which specifies the internal ex-
pected behavior and coordination of the CBS components).

Operational testing: How do we select the test cases to be executed? As the basis
assumption of this approach is that a detailed component model is not available
(assuming the component is off the shelf), we use the only information that
is anyhow available (it may be in various forms): the expected Input/Output
functions of the components. This information has to be available in some form,
otherwise we could not even use the components.

Monitoring Black-box Component-Based Systems: We execute the implementa-
tion on the selected test cases, by observing the traces of execution via monitoring
techniques. Traditionally, monitoring techniques are realized by instrumenting
the component code in order to capture desired information from execution.
However, since components can be black box with no available code, we cannot
instrument the component in traditional ways. For this purposes, we adopted a
middleware instrumentation.

Model-Checking CBS conformance to CBSA: The execution traces are used to
check the CBS conformance to the CBSA specification. We remind here that
while the CBSA specification described the intended/expected system usages,
the CBS execution traces (obtained via monitoring) represents how the imple-
mented CBS works. Model-checking techniques are then utilized to compare
expected and real behavior.

In this paper we will focus our attention on the Monitoring and Model-
Checking activities, while future work will investigate how such technologies can
be used for verifying dynamically evolving CBSs. For this purpose, we will distin-
guish, as showed in Figure[ll among architectural components (the abstract ideal
components of the SA, specified by their interfaces and their expected model of
interactions), concrete components (the components of the implemented CBS,
obtained by refining SA components or by adapting existing components), and
real components (the building blocks of the concrete components, and can be,
for instance, Commercial-off the Shelf — COTS — components). Concrete and
real components may coincide, or a concrete component could be obtained by
the assembly or wrapping of real components.

4 Monitoring Black-Box CB Systems

Monitoring is the activity intended to collect and check information about spe-
cific properties and behavior of a system during its real execution. Different
elements and issues can be recognised in a monitoring setting:

1. the monitored system is the software whose behaviour and properties are
of interest. The functionalities provided by such system are those that are
in general relevant for an external user.

2. the monitoring system is the software that collects specific information
on the monitored system. In general the monitoring system accepts as input

Architectural Verification of Black-Box Component-Based Systems 103

the information to be observed and collected, and the constraints on the
behaviour/properties of the system that must be respected.

3. If a violation is detected, the monitoring system communicates the anomaly
to a controlling component. The latter, that in some cases can also be a
human agent, should put in place a set of actions to manage the anomalous
condition and restore the system to a correct state (note this step is out of
the scope for the proposed approach).

Observability of the monitored system is certainly the basic element con-
straining what can be monitored: it refers to what an external observer can
notice about the system/component behaviour and properties evolution. In the
fortunate case that the system has been developed having already in mind what
is necessary to check, the set of information that can be observed generally en-
closes the set of what is necessary to monitor. Unfortunately this is not the
general case.

Monitoring becomes particularly tough when the source code of a software
component cannot be directly accessed and modified, as it is the rule when black-
box reuse of software components externally acquired is considered. In such a
situation the only information that can be accessed by an external agent are those
expressly made available by the component developer. In CB programming this
will generally only include the information passed trough the public interface.

Our approach requires to collect specific information for checking that the
interactions among the concrete components are actually allowed by the archi-
tectural description. Two basic elements are needed to put in place this kind of
verification activity:

1. a technique for representing the concrete interactions in a way that will be
suitable for the architectural checking step

2. a mechanism for observing component interactions as they happen at run-
time

In our approach the execution traces are abstracted to Message Sequence Charts
(MSCs) reporting the whole signature for each invoked method. It is worth noting
that these diagrams will not report any internal interactions within a concrete
component implementation, given that its implementation is transparent to the
system integrator.

The most obvious mechanism to observe component interactions might seem
wrapping each concrete component with code that in some way records all the
incoming and outgoing invocations. However, a concurrent behaviour of the
wrapped component (e.g., the simultaneous invocation of different methods ex-
posed by the component by at least two different threads of execution, or the
internal activation, within the invoked component, of another thread) hinders
the identification of the correct relations among incoming and outgoing call to
and from the component. An example can aid to understand the problem. In
Figure 2l component B invokes (b) component C while this component is already
processing an invocation (a) from component A. In this situation a standard
Wrapper of the C component could not recognize the thread that gave rise to

104 A. Bertolino, H. Muccini, and A. Polini

the invocation “c” towards component D. So when situations such as that rep-
resented in the figure happen, it becomes impossible, using only a “wrapping”
approach, to correctly associate outgoing invocations with the corresponding
incoming ones.

Fig. 2. Wrapping cannot easily manage concurrent invocations

An alternative way to monitoring, the one we chose, is to base such activity
on the run-time environment of the application under verification, finding suit-
able mechanisms to observe the inteactions among the components “following”
threads of executions. In a local approach based on Java, for instance, this would
mean that we have to base the monitoring on direct interactions with the Java
Virtual Machine (JVM) or we have to define an appropriate version of the JVM
directly inserting monitoring features on it. In a distributed setting, instead, this
would mean to insert the monitoring activity as part of the middleware level and
not at the application level as in the case of the wrapping approach. At this point
the problem to solve is how it is possible to retrieve the needed information to de-
rive meaningful execution traces. As stated before we can assume the knowledge
only of the interfaces to be implemented by the concrete component. However in-
serting monitoring mechanisms within the application run-time support (JVM for
the java application) will permit to increase the observability of the executed ap-
plication to all the invocations that the components composing the application
exchange among them. At this point the idea is that the only additional infor-
mation we need is to observe all the actions and interactions on and among the
processes (thread of execution) activated by the execution of the application. So
starting with the “main” thread of the application we should observe, behaving as
a sort of debugger, when new processes are activated, when they interact or when
they stop. At the same time we should be able to record when a process during its
execution “hits” one of the methods of the interface implemented by one concrete
component. For each process the invocation sequence are stored in different files
successively used to recreate the traces that have been actually executed. Consid-
ering the scenario in Figure 2] the result of the monitoring will be two different
files, the first reporting the sequence of invocations “C.a”,“D.c¢” and the second
the sequence “C.b”, providing the precise information on the call sequences.

Architectural Verification of Black-Box Component-Based Systems 105

The above approach is implemented into a proof-of-concept monitoring tool
called Theseus, from the mythological character that used a thread to trace the
path to the way out from the minotaur’s maze. In the current version Theseus
can only monitor the execution of non distributed CBS (implemented using the
Java language); we are currently working to add support also for Java Remote
Method Invocations.

Theseus implementation is based on the Java Platform Debugger Architecture
(JPDA) API (Application Programming Interface). The tool takes as input the
.class files containing the interfaces defined for the concrete components, then
using the API defined in the JDA, it asks to the JVM to notify when methods
on this interfaces are invoked. When this happens the JVM is stopped and
all the information concerning the invocation are retrievied and stored in the
corresponding file; then the machine can then be restarted. The JVM bloking
behaviour is consequence of the fact that the API and the JVM have not been
explicitly developed for monitoring purpose, and a non stopping behaviour will
raise the risk of loosing relevant information given the occurence of successive
method calls.

The tool Theseus also records all the invocations made on objects of the
java.lang.Thread class, that in Java are the abstraction of processes. In such
manner the tool can recognize when a Thread interacts with another via a notify,
or also when it activates another thread creating and starting it, permitting to
manage the issues raised by the presence of concurrency. In Figure [3] the main
window of Theseus is shown.

5 Model-Checking CBS Conformance to CBSA

As soon as execution traces have been collected after monitoring the component-
based system implementation, they have to be checked for consistency to ex-
pected architectural behaviors. This validation phase has to identify if and how
much the (behavior of) realized system complies to what has been previously
specified at the architecture level. In fact, while execution traces denote the real
system behavior when submitted to certain inputs, architecture-level behavioral
models identifies the expected behavior.

The architectural model-checking approach we take in place here is CHARMY,
a model-based approach for architectural checking.

CHARMY[2] enables the specification of a software architecture through di-
agrammatic (UML-based) notations, and the werification of the architectural
specification conformance with respect to certain temporal properties, represent-
ing how architectural elements are supposed to be coordinated. By focussing on
CHARMY main features, we have that:

Specification: CHARMY allows the specification of a software architecture by
means of both a topological (static) description and a behavioral (dynamic)
one [IT]. The specification of the SA topology is realized in terms of stereotyped
UML 2.0 component diagrams, where components represent abstract computa-
tional subsystems and connectors formalize the interactions among components.

106 A. Bertolino, H. Muccini, and A. Polini

L] THESEUS
File Help

... Tesen iz starting the aeneration of traces , | . -
Launching JvM target using the following parameters:

hio e = fusr) java/jdkl.> 0_01/jre

options=-cp fhome/mescalfDeskiop fAlessia/Tesen fworkspace/Teseo/hin
main=core.launcher, Charmsplash

suspend=true

Huote="

EXBC=jaVE L
LAUMNCHED W'k IHFO
Wh target Java Debug Interface (Reference [mplementation) wersion 1.5
ava Depug Wire Protocol (Reference Implemeantation) wersion 1.5
Wh Debug Interface wersion 1.0
Wil wersion 1.5.0_01 {Java Hotspot Ty Client VM, mixed mode)
BazeDirectons Jhomesmescal/Deskiop, Alessia/Tese/workspace STesen
BootClassPath: fusrfigvalidkl.5. 0_01fjra ks, jar
BootClassPath; Jusr/javaljdkl.5.0_0L14re/libfi18n. jar
BootClassPath: Jusryjava/jdkl.5.0 014 re/libfsunrsasian. jar
BootClassPath: fusrfigvalidkl.5. 0 01 jreflibfisca. jar
BootClassPath: fusrfiavalidikl.c.0_01fjreflibfice. jar
BootClassPath: fusrfigvalfidkl.c. 0_01fjreflibfcharsars. jar
BootClassPath: Jusrfjava/jdkl.5.0 014 re/classes
ClassPath: JhomefmescalfDeskiop/dessia/Teseo /workspace /Tesen/bin

1M Taraet startecll _ .
method calll java lang Thread.izDaeman(
4] i I [¥]

[41

| Quit || NewMunimring' ‘

Fig. 3. Theseus start interface

The internal behavior of each component and the coordination of the interacting
components is specified in terms of stereotyped UML 2.0 state machines.

Verification: once the SA specification is available, a translation engine auto-
matically derives from the model-based SA specification, a formal executable
prototype in Promela (the specification language of SPIN) [I3]. On the gener-
ated Promela code, we can use the SPIN standard features to find, for example,
deadlocks or parts of states machines that are unreachable.

Figure [graphically summarizes how the tool supporting the CHARMY ap-
proach works: the CHARMY tool editor allows the graphical specification of the
SA topology and behavior and the properties in terms of UML diagrams. In
step 1, component state machines are automatically translated into a Promela
formal prototype. Once the Promela model is produced SPIN standard checks
may be performed. In Step 2, scenario specifications (in the form of extended
Sequence Diagrams) are automatically translated into Biichi automata (the au-
tomata representation for LTL formulae). Such automata describe properties
to be verified. Finally, in Step 3 SPIN evaluates the properties validity with
respect to the Promela code. If unwanted behaviors are identified, an error is
reported.

Architectural Verification of Black-Box Component-Based Systems 107

[==] p . 1 i
SA _Topology ¢ SA_Dynamic:
ITI E) rdls é "“'f:‘._
[==1 + —
a) b) c)
YQ Step 1

o] Step 3
== Charmy specific Automata

Simulation and
Standard Verification

Fig. 4. Tool Support for CHARMY Main Features

6 Applying the Approach to the CHARMY Plugin System

As a case study to experiment the approach we have taken the CHARMY plugin
system. We provide an outline of the CHARMY software architecture and its
specification (Section [6I)). Then, we identify some monitored traces and show
how CHARMY can check some properties over its architectural model (Section
[62). We conclude this section with some considerations and evaluation of results

(Section [63).
6.1 The CHARMY Plugin Architecture and Its Specification

The CHARMY architecture is composed by two main parts: the CHARMY Core
and the Plugin Package.

The CHARMY Core macro-component is composed of the Data Structure
component, the Plugin Manager and File Manager which allows the handling
of plugins of type editor and file, respectively, the GUI which receives stimuli
from the system users, and the Event Handler which handles all those events
generated by plugins. The CHARMY core handles the plugin management by
specifying: 7) how a new plug should be implemented, i) how the core system
has to recognize the plug and use it, and iii) how the core and plug components
should interact. Figure Bl graphically summarizes the interfaces to be imple-
mented in order to plug a new component in the system. Details on how to
implement and recognize a new plug, and plugs interaction are provided in [I4].

The Plugin Package contains a set of plugins to specify and analyze software
architectures. The Topology, State, and Sequence editors permit to edit the soft-
ware architecture topology, the architectural state machines and the scenarios,
respectively. The PSC2BA and Promela Translation plugins allow an automatic
translation from sequence diagrams to Biichi automata and from state machines

108 A. Bertolino, H. Muccini, and A. Polini

to Promela code. Such translations permit the application of model-checking
techniques at the software architecture level. The TesTor component allows the
generation of architectural test specifications. The Composit component allows
for compositional analysis of middleware-based SA. For more details, please refer

to [19].

Plug Charmy Core
(of type editor)

I <<implements>>

| -® ;

| IMainTabFane Plugin Manager
<<\mp\err\ems>> P/

. ug
: File Managq] (of type file)
<<|mp|er'\ents>>
| SerializableCharmyFile IFilePlug
—_——— — e o ——]

Fig. 5. Plug and Core

By means of the Promela Translation plugin, the CHARMY architectural spec-
ification has been automatically translated into a formal executable prototype
in Promela, and checked through SPIN standard checks (step 1 in Figure [).
After few modeling and checking iterations, we produced a stable correct (with
respect to SPIN checks) architectural specification.

6.2 Validating the CHARMY Implementation with Respect to Its
Architectural Specification

The CHARMY core and plugs implementation has been realized in the last three
years at the Computer Science Department, University of I.’Aquila. When mov-
ing from version 0 to version 1, the tool implementation has been re-structured to
make it plugin-based. More recently, when moving from version 1 to the current
version 2.0 beta, some minor modifications have been made, while re-thinking
some interfaces and adding some utilities. Many plugins have been created and
unit tested. Since many of them have been realized thanks to students support,
our confidence on the plugin-core integration correctness has been mainly based
on beta testing.

We then decided to use the approach as a means to validate the plugin-
core integration (i.e., to check if the integration of a new plug in CHARMY
may violate the CHARMY core standard behavior). We submitted the CHARMY
system implementation (together with its plugins) to three different analysis:
i) we plugged the Topology Editor component to monitor and check its cor-
rect integration into the CHARMY system, i) we monitored an initially faulty
version of the ExplodePlugin component, in order to obtain an error trail

Architectural Verification of Black-Box Component-Based Systems 109

enabling the localization of the fault, and 4ii) we injected a fault on the Topol-
ogy Editor final version, in order to evaluate the approach ability to precisely
localize an expected fault.

Analysis of type i): When running CHARMY with the Topology Editor plugged
into the system, we can observe via Theseus only a subset of the entire flows
of events (since Theseus in its current version can monitor only interfaces). In
particular, it can collect information on how the CHARMY Core loads the plugin,
how the copy/cut/undo operations are performed, how the resulting topology
diagram is stored and closed.

Figure[f shows one of the typical traces produced when monitoring the Topol-
ogy Editor/Core integration. As we can see from the figure, the scenario is quite
complex, since it records a quite long list of events. In any case, all the internal
(to the plug) operations are not observed, since they are implemented without
any specific interface.

Indeed, analyzing the scenario by hand, will be extremely expensive. Instead,
the scenario has been drawn into CHARMY, automatically translated into a Biichi
automaton representation, and the SPIN verification has been run. No errors
have been detected.

| : utente %l ‘Irllerfnm:ia:Jmee ‘ ‘ PlugDataWin | | PlugDatahdanager | | i ‘ ‘ Fil
T T T

" 1 start Charm

I
|
2 oreste L3 createBaseni

4 bazeGUI

3 ereate

T

|

|

|

|

|

~

[

= =

|

|

|

|

|

|
™
2

Fig. 6. Monitoring the Topology Editor interaction with the CHARMY Core

Analysis of type ii): In this second scenario, we selected the ExplodePlugin plugin
we knew had a bug. This plugin has been realized for testing purposes. It creates
incrementally a multitude of plugins to be loaded in CHARMY. Our goal was to
evaluate how much CHARMY scales and performs when a multitude of plugins
are plugged into the CHARMY Core. We knew in advance the plugin was buggy,
but we did not know where the fault was localized.

110 A. Bertolino, H. Muccini, and A. Polini

When running the Theseus monitoring activity, many scenarios have been
recorded. For sake of space, we do not report them here. When applying the
CHARMY model-checking approach to this scenario, the expected error trail has
been detected, highlighting the location of the first undesired (with respect to
the architectural model) interaction.

Analysis of type iii): Ultimately, we tested the monitoring + model-checking abil-
ity to precisely localize faults. While analysis i) permits to localize the fault,
analysis #i7) allows approach users to check how much the localized fault corre-
sponds to the expected (injected) one. Then, this activity represents a validation
of the approach precision in localizing faults.

A fault has been injected in the Topology Editor component. When loading
this faulty version into CHARMY, and after Theseus monitoring, many traces have
been collected (not reported for space limits). When running the SPIN verification
feature, an error trail has been raised, indicating the unwanted behavior.

Indeed, we cannot expect the approach to identify all possible injected faults.
Only architectural coordination faults can be detected. Moreover, the fault lo-
calization ability of the approach strongly depends on the Theseus ability to
monitor events. Since in its current version Theseus monitors only such ser-
vices implemented via interfaces, the approach localizes the first architectural
interaction affected by the injected fault.

An interesting discover we made thanks to the application of the approach
has been that the students introduced many architectural mismatches using
direct reference to classes instead of using the defined interfaces. By executing
the CHARMY tool in a monitored environment we did not notice any strange
behaviour; but subsequently the traces collected by Theseus did not expose all
the interactions we expected. Indeed we could see all the initial invocations made
by the core components to correctly initialise all the installed plug-ins, but after
these invocations we could observe less invocations with respect to the expected
ones. Initially we thought there was an error in the Theseus implementation
previously tested only on small case studies. After having analysed the code
of Theseus without finding a solution to the problem we tried to investigate
whithin the CHARMY code. During this investigation we discovered that often
students preferred to use direct casting on objects or however direct reference
to external classes. So we were faced with an implementation containing many
architectural mismatches affecting the possibility of substituting components
with new versions implemented by different classes. Clearly this architectural
mismatches strongly affected our capability of analysis since Theseus is only able
to trace invocations occurring through interfaces. Indeed this kind of mismatches
could be discovered through static analysis, assuming any tool is available for
code-level checking of architectural properties.

6.3 Considerations and Evaluation of Results

With the use of teh approach, we can test the system coordination, by integrating
monitoring and model-checking techniques. If the system implementation behaves

Architectural Verification of Black-Box Component-Based Systems 111

accordingly to the system specification, an ok message is raised. Otherwise, an
error trace identifies where the execution trace differs from the expected one.

When an anomalous behavior is known, the approach allows the detection
and localization of known but unwanted faults. It acts as a sort of debugger,
identifying which components are behaving incorrectly when integrated.

In both cases, the ability of the approach to detect and precisely localize a
fault can be evaluated via fault injection.

Moreover, with respect to traditional specification-based testing techniques,
the approach permits to analyze the implementation conformance to external in-
put/output (as in traditional IOLTS-based testing) and also the implementation
conformance to the entire architectural trace (by model-checking the execution
scenarios compliance to the architectural model).

According to the experiment conducted over the CHARMY system, we here
propose some initial considerations and evaluation of results (being conscious
more deeper investigation is required to provide more informative insights):

Automation: So far, a quite relevant part of the approach is supported by tools.
The architectural specification is made through the CHARMY editors. Test cases
generation can be realized according to [I8]. The monitoring activity has been
supported by the Theseus tool. The model-checking activity is realized through
the integration of CHARMY features and the model-checking engine SPIN;

Costs: Monitoring black box components is generally an invasive and expensive
activity. Since Theseus requires to stop the JVM at each time an information
needs to be collected, the monitoring activity for a complex execution may re-
quired up to ten minutes. However, we are working on modifying the JVM in
order to reduce the monitoring time. Regarding the model-checking activity,

time effort is quite limited, since properties of interest “p” are submitted to an
existential check (i.e., check if “p” exists in the system model “m”).

Scalability: Even if more experimental results are needed for a finer evaluation,
the approach seems to be able to scale to larger systems (assuming an improve-
ment on the monitoring activity performance).

7 Conclusions and Future Work

We have presented a novel approach to the SA-driven verification of CBSs, in
that it combines the strengths of either approaches, trying to overcome the in-
herent difficulty of reproducing a predefined sequence of events of model-based
testing, but enriching the power of monitoring with a rigorous model-check stage
of the obtained traces. The goal of the approach is to verify that some important
SA properties are indeed satisfied by the implemented CBS, and continue to be
so even after evolution. The approach is in fact conceived as a comprehensive
methodology to be used without interruption both for in-house validation (off-
line testing), and for continuous verification in use (on-line testing). The goal
we pursue is quite ambitious, and of course we are not yet done, but several

112 A. Bertolino, H. Muccini, and A. Polini

pieces of the approach are already implemented. In this paper we have already
presented some promising results by applying the approach for off-line testing
of the CHARMY architecture. Even though the approach proposed can show ap-
pealing opportunity, its usage should be carefully evaluated, particularly for the
case of on-line testing. Monitoring being executed concurrently with the applica-
tion strongly affects performance. The monitoring technique we propose seems
to be particularly powerfull but if not supported by adequate tools particularly
expensive. In the current implementation performance can be reduced up to
ten times when many threads are started. We are currently investigating some
tool improvements in order to make it applicable for the run-time monitoring of
multi-threades applications.

Acknowledgements

The authors wish to thank Alessia Bardi and Ezio Di Nisio for their important
contribution to the implementation of part of TANDEM tools.

This work is partially supported by the PLASTIC Project (EU FP6 STREP
n.26955): Providing Lightweight and Adaptable Service Technology for pervasive
Information and Communication. http://www.ist-plastic.org.

References

1. An Approach for Tracing and Understanding Asynchronous Systems. ISR Tech.
Report UCI-ISR-02-7, 2002.

2. CHARMY Project. Charmy Web Site. http://www.di.univaq.it/charmy, 2004.

3. Fujaba Project. http://wwwes.uni-paderborn.de/cs/fujaba/publications/
index.html, 2005. U.Paderborn, Sw Eng. Group.

4. Rapid System Development via Product Line Architecture Implementation, Herak-
lion Crete, GREECE, September 2005. LNCS.

5. R. Allen and D. Garlan. A Formal Basis for Architectural Connection. ACM
Trans. on Software Engineering and Methodology, 6(3):213-249, July 1997.

6. M. Bernardo, L. Donatiello, and P. Ciancarini. Performance FEvaluation of Complex
Systems: Techniques and Tools, chapter Stochastic Process Algebra: From an Alge-
braic Formalism to an Architectural Description Language. LNCS, 2459:236-260,
September 2002.

7. A. Bucchiarone, H. Muccini, P. Pelliccione, and P. Pierini. Model-Checking plus
Testing: from Software Architecture Analysis to Code Testing. In Proc. Inter-
national Testing Methodology workshop, LNCS, vol. 3236, pp. 351 - 365 (2004),
October 2004.

8. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT Press,
Cambridge, second edition, 2000.

9. I. Crnkovic and M. Larsson, editors. Building Reliable Component-based Software
Systems. Artech House, July 2002.

10. S. Elbaum and M. Diep. Profiling Deployed Software: Assessing Strategies and
Testing Opportunities. IEEE Trans. on Software Engineering, 31(8):1-16, August
2005.

11

12.

13.

14.

15.

16.

17.

18.

19.

20.

Architectural Verification of Black-Box Component-Based Systems 113

. D. Garlan. Software Architecture: a Roadmap. In ACM ICSE 2000, The Future
of Software Engineering, pages 91-101. A. Finkelstein, 2000.

D. Garlan. Formal Modeling and Analysis of Software Architecture: Components,
Connectors, and Events. In Formal Methods for Software Architectures, pages 1-24.
LNCS, 2804, 2003.

G. J. Holzmann. The SPIN Model Checker: Primer and Reference Manual.
Addison-Wesley, September 2003.

P. Inverardi, H. Muccini, and P. Pelliccione. CHARMY: An Extensible Tool for Ar-
chitectural Analysis. In ACM Proc. European Software Engineering Conference/the
Foundations of Software Engineering (ESEC/FSE), September 2005.

Kimmo Kiviluoma, Johannes Koskinen, and Tommi Mikkonen. Run-time moni-
toring of architecturally significant behaviors using behavioral profiles and aspects.
In Proceedings of the International Symposium on Software Testing and Analysis
(ISSTA’06), pages 181-190, July 17-20 2006. Portland, Maine, USA.

J. Magee, J. Kramer, and D. Giannakopoulou. Behaviour Analysis of Software
Architectures. In I Working IFIP Conf. Sw Architecture, WICSA1, 1999.
Leonardo Mariani and Mauro Pezze’. Behavior Capture and Test: Automated
Analysis of Component Integration. In IEEE Computer Society, editor, In 10th
IEEE International Conference on Engineering of Complex Computer Systems,
Shangai (China), 16-20 June 2005.

H. Muccini, A. Bertolino, and P. Inverardi. Using Software Architecture for Code
Testing. IEEE Trans. on Software Engineering, 30(3):160-171, March 2003.

P. Pelliccione. CHARMY: A framework for Software Architecture Specification and
Analysis. PhD thesis, Computer Science Dept., U. L’Aquila, May 2005.

C. Szyperski. Component Software. Beyond Object Oriented Programming. Addi-
son Wesley, 1998.

Systematic Generation of XML Instances to Test
Complex Software Applications*

Antonia Bertolino, Jinghua Gao, Eda Marchetti, and Andrea Polini

Istituto di Scienza e Tecnologie della Informazione “Alessandro Faedo”
Consiglio Nazionale delle Ricerche
Via Moruzzi, 1 — 56124 Pisa, Italy
{antonia.bertolino, jinghua.gao, eda.marchetti,
andrea.polini}@isti.cnr.it

Abstract. We introduce the XPT approach for the automated system-
atic generation of XML instances which conform to a given XML Schema,
and its implementation into the proof-of-concept tool TAXI. XPT can be
used to automatize the black-box testing of any general application that
expects in input the XML instances. We generate a comprehensive set of
instances by sampling all the possible combinations of elements within
the schema, applying and adapting the well known Category-Partition
strategy for functional testing. Originally, XPT has been conceived for
application to the e-Learning domain, within which we briefly discuss
some examples.

1 Introduction

Increasingly today complex software systems are developed according to a mod-
ular architecture, within which precise features can be identified and separately
implemented. Main objective of this “componentization” trend is to permit the
development of the different features of a complex composite application by di-
verse stakeholders while maintaining the possibility of integrating the subsystems
into a unique working system. Nevertheless the integration clearly presupposes
the definition of a rigorous and checkable format of the data exchanged between
the components.

One of the most important innovations that strongly contributes to solve this
issue has been the introduction of the eXtensible Markup Language (XML) [IJ.
In few years this language has established itself as the de facto standard format
for specifying and exchanging data and documents between almost any software
application. Immediately following, the XML Schema [2] has then spread up as
the notation for formally describing what constitutes an agreed valid XML docu-
ment within an application domain. Thus, XML Schemas are used for expressing
the basic structure of data and parameters that remote components exchange
with each other, and restrictions over them, while XML instances, formatted

* This work has been supported by the European Project TELCERT (FP6 STREP
507128).

N. Guelfi and D. Buchs (Eds.): RISE 2006, LNCS 4401, pp. 114-[129] 2007.
© Springer-Verlag Berlin Heidelberg 2007

Systematic Generation of XML Instances 115

according to the rules of the referred XML Schema, represent the allowed nam-
ing and structure of data for components interaction and for service requests.

The introduction of XML for specifying standard format of exchanged data is
certainly fundamental and strongly increases the possibility of correct interactions,
nevertheless XML related technologies do not solve the interoperability problem
per se. No information concerning the interpretation of data can be associated to
an XML description, leaving the room for different interpretations by the various
developers. Trying to make a further step toward guaranteeing interoperability,
our proposal here is to combine the great potential of XML Schema in describing
input data in open and standard form, with testing activity to assess the common
understanding of interacting e-Learning systems. In doing this, our intention is to
take advantage of the special characteristic of the data representation suitable for
automated processing, which is clearly a big advantage for testing.

We find that the adoption of the XML Schema leads quite naturally to the ap-
plication of partition testing, a widely studied subject within the testing commu-
nity, since it provides an accurate representation of the input domain into a for-
mat suitable for automated processing. The subdivision of the input domain into
subdomains, according to the basic principle of partition testing, can be done au-
tomatically by analyzing the XML Schema elements: from the diverse subdomains
identified, the application of partition testing amounts to the systematic deriva-
tion of a set of XML instances. Systematic generation of XML instances, differ-
ently from a random based approach, clearly has important consequences on the
effectiveness of the generated test suite permitting to derive meaningful statistics
on the kind of instances generated, and then on the covered features.

This paper introduces our proposed XML-based Partition Testing (XPT) ap-
proach for the systematic generation of XML instances. Also a short overview
on a proof-of-concept tool, called TAXI (Testing by Automatically generated
XML Instances), is provided. Such tool inputs an XML Schema and automati-
cally generates a set of XML instances for the black box testing of a component,
whose expected input conforms to the taken schema. At the same time the paper
reports a preliminary qualitative evaluation of the approach to the generation
of instances for the IMS Learning Information Package specification.

In the remainder of this paper we discuss some related work in Section [2]
and summarise the well known Category Partition method in Section B then
we provide a description of the proposed strategy in Section [] and of the tool
implementing it in Section Bl Section [0] finally reports some preliminary con-
siderations on application of the methodology; in particular in we provide
quantitative motivations to the application of a systematic approach, then in[6.2]
a simple qualitative comparison of TAXI with another existing tool (XMLSpy)
is presented. Some conclusions are finally drawn in Section [

2 Related Work

Our research is aimed at automatically generating a comprehensive suite of XML
instances from a given XML Schema. The generated XML instances can then be

116 A. Bertolino et al.

used for the black-box testing of applications that expect such XML instances
as input.

Notwithstanding the intense production of XML-based methods and tools in
the latest years, to the best of our knowledge there do not exist other XML-based
test approaches comparable to ours. Indeed, the existing “test tools” based on
XML can be roughly classified under three headlines:

— testing the XML instances themselves;
— testing the XML Schemas themselves;
— testing the XML instances against the XML Schema.

Regarding the first group, a basic test on an XML file instance is well-formedness,
which aims at verifying that the XML file structure and its elements possess
specified characteristics, without which the tested file cannot be even classified
as an XML file. Diverse sets of test suites (for instance [3], [4]) and various tools
aiming at validating the adequacy of a document instance to a set of established
rules, such as [5], have been implemented.

With regard to the testing of XML Schemas themselves (second group), sev-
eral validators exist for checking the syntax and the structure of the W3C XML
Schema document (for instance, [6], [7], [8] [9], and [10]).

The third group encloses tools for automatic instance generation based on
XML schema, which is what we also do. Relevant tools of this group are [I1],
[12] and [I3]. However for all of them the XML instances generation only im-
plements random or ad hoc generation; the instances are not conceived so to
cover interesting combinations of the schema. Indeed this characteristic is where
our approach tries to provide a comprehensive solution. Adopting a systematic
criterion in generating instances will have a double positive side effect: the gen-
eration of more accurate and mindful XML instances and the automatization of
black box test suite specification.

So far no proposal has really succeeded in pushing the widespread adoption of
automated black box testing as it would deserve. The well known Category Par-
tition method [I4] provides a procedural approach to analyse the input domain
and to systematically derive a comprehensive test suite (see a brief description
in the next section). It has been previously applied by many authors to require-
ments specifications expressed in various notations (for instance also by authors
of this paper to UML specifications [T5]). We propose here to apply it to XML
schema. We think in fact that the widespread acceptance of XML, and its prag-
matic flavor, associated to the Category Partition methodology could finally be
the winning instrument to achieve fully automated black-box testing.

3 Category Partition

Introduced in the late 80’s and today widely known and used, the Category
Partition (CP) [I4] provides a systematic and semi-automated method for test
data derivation, starting from analysis of specifications until production of the
test scripts, through the following series of steps:

Systematic Generation of XML Instances 117

1. Analyze the specifications and identify the functional units (for instance,
according to design decomposition).

2. For each unit identify the categories: these are the environment conditions
and the parameters that are relevant for testing purposes.

3. Partition the categories into choicesf] these represent significant values for
each category from the tester’s viewpoint.

4. Determine constraints among choices (either properties or special condi-
tions), to prevent the construction of redundant, not meaningful or even
contradictory combinations of choices.

5. Derive the test specification: this contains all the necessary information for
instantiating the test cases by unfolding the constraints.

6. Derive and evaluate the test frames by taking every allowable combination
of categories, choices and constraints.

7. Generate the test scripts, i.e. the sequences of executable test cases.

The XML Schema provides an accurate representation of the input domain
which leads quite naturally to the application of the Category Partition. In par-
ticular the subdivision of the input domain into functional units and the identi-
fication of categories can be done by exploiting the formalized representation of
the XML Schema.

4 Automatic Instances Generation

In this section we briefly describe our original XML instances generation ap-
proach, which is called XML-based Partition Testing (XPT) [I6]. A proof-of-
concept tool called TAXT (Testing by Automatically generated XML Instances)
implementing the proposed methodology is also described.

The XPT methodology is composed by two components: XML Schema Anal-
ysis (XSA), and Test Strategy Selection (TSS). The former, detailed in Section
ATl implements a methodology for analyzing the constructs of the XML Schema
and automatically generating the instances. The latter, described in Section [£.2]
implements diverse test strategies useful both for selecting those parts of the
XML Schema to be tested and for opportunely distributing the instances with
respect to the Schema elements. These two phases work in agreement, as shown
in Figure[Il to realize the application of the Category Partition method.

4.1 XML Schema Analyzer

In this section we introduce the functions realized by the XSA Component as
schematized in Figure [[l Specifically XSA takes as an input the weighted ver-
sion of the original XML Schema that is provided at the end of the first ac-
tivity (details in Section 2)) and foresees a Preprocessor activity in which the
XML Schema constructs, like all, simpleType, complexType and so on, and the

! Note the usage of the same term “choice” both in XML schema syntax (written as
<choice>) and in the CP method (written as choice), which is purely accidental.

118 A. Bertolino et al.

XPT Activity Diagram /

XML Schema Analyzer (XSA) Test Strategy Selector (TSS)

Weigth Assignment

Preprocessing

Choice Analysis
Strategy Selection

Occurrences
Analysis

Intermediate

Instance Derivation

Final Instance

Derivation

Fig. 1. XPT main activities

shared elements, like group, attributeGroup, ref, and type, are analyzed and
manipulated. The choice elements are excluded from the Preprocessor activity
because they will be analyzed by the T'SS component.

Considering, for instance, the all elements, one of the possible sequences of
their children elements is randomly chosen |4 and used for generating instances;
for each group element, instead, its body is copied wherever it is referenced.
These preprocessing operations of course do not contribute to the definition of
the test instances, but simplify their successive automatic derivation.

As detailed in Section the next two activities by the TSS component
have the purpose of: extracting the Functional Units (i.e. a list of subschemas)
from the original XML Schema, by means of the analysis of choice elements,
and selecting the test strategy that must be implemented (i.e. either covering a
certain percentage of subschema functionalities or distributing a fixed number
of instances among all the extracted subschemas, or a combination).

2 A random selection algorithm which provides the elements ordering has been imple-
mented for this purpose.

Systematic Generation of XML Instances 119

The implementation of the Category Partition methodology proceeds with the
Occurrences Analysis activity, which analyzes the occurrences declared for each
element in the subschema and, applying a boundary conditions strategy, derives
the border values (minOccurrences and maxOccurrences) to be considered for
the final instances generation.

The results of this activity are combined together during the last steps of the
XPT methodology by deriving a set of intermediate instances structures. Values
are given to the elements listed into each intermediate instance structure. For
this purpose in the current version of TAXI a set of specific algorithms have been
implemented to provide the required number of random values for each specific
element type. In the current implementation, predefined values available in the
Schema and various constraints (for instance facets), have been considered.
Finally, according to the selected test strategy, the Final instance derivation
activity produces the final set of instances, which corresponds to the test suite.

4.2 Test Strategy Selection

Testing is an essential, but expensive part of development. Hence test cases need
to be prioritized, although generally it is not easy to decide on which parts of
the application the testing effort should be concentrated and the amount of test
cases to dedicate to each of them. The XML Schema representation of the input
domain can help in this regard, by making it possible to implement a practical
and automatic strategy for planning a suitable set of test instances.

The component of the XPT methodology which is in charge of this task is the
Test Strategy Selection. It completes the implementation of the Category Par-
tition by allowing for the selection of three specific test strategies. Referring to
Figure [these include: Weights Assignments, which assigns weights to the chil-
dren of the choice elements; Choice Analysis, which derives a set of subschemas
the original XML Schema by means the analysis of the choice elements and
first level elements; and Strategy Selection, which selects the test strategy to be
implemented. We describe them in detail in the following.

Weights Assignments. The idea underneath the Weights Assignments activ-
ity is that the first level element or the children of the same choice may have
not the same importance for instances derivation. There could be options rarely
used or others having critical impact into the final instance derivation. Specifi-
cally considering with choice elements, according to their definition, only one
child per time can appear into the set of final instances, hence from the user
point of view the possibility of selecting those more important could be very at-
tractive. He/she can pilot the automatic instance derivation forcing it to derive
more instances including the most critical choice options.

The XML Schema does not provide the possibility of explicitly declaring the
criticality of the diverse options, but often this information is implicitly left to
the judgement and expertise of the human agent. The basic idea is that the
XML Schema users are asked to make explicit this knowledge. In particular
XPT explicitly requires to annotate each child of a choice element with a value,

120 A. Bertolino et al.

belonging to the [0,1] interval, representing its relative “importance” with re-
spect to the other children of the same choice. This value, called the weight,
must be assigned in such a manner that the sum of the weights associated to
all the children of the same choice element is equal to 1. A node more critical
has greater weight. Several criteria for assigning the importance factors could be
adopted. Obviously this aspect in the proposed approach remains highly subjec-
tive, but here we are not going to provide a quick recipe on how numbers should
be assigned. We only suggest expressing in quantitative terms the intuitions
and information about the peculiarity and importance of the different options,
considering that such weights will correspondingly affect the testing stage.

Once the weights have been assigned, XPT uses them to derive, for each
option in the diverse choice elements, the relative importance factor, called the
final weight, in terms of how risky is that child and how much effort should be
put into the derivation of instances containing it. In a simplified version the final
weight of every child is then computed as the product of the weights of all nodes
on the complete path from the root to this node. Note that the sum of the final
weights of the leaves is still equal to one.

Choice Analysis. As shown in Figure [I after the Preprocessor activity the
XPT methodology foresees the analysis of choice elements for deriving a set of
subschema. These allow only one of the elements contained in their declaration
to be present within a conforming instance. This means that for any alternative
within a choice construct, a separate sub-XML Schema containing it can be
derived. Stretching somehow the original meaning of a functional unit, each
possible sub-schema is put in correspondence with the notion of a Category
Partition functional unit. In other terms, in XPT functional units are meant as
”domain units” and are thus assimilated to subsets of XML Schema elements
that can originate correct testing instances by managing separate set of data
inputs.

Obviously now the problem is the possible occurrence of several choices
within one schema, which gives rise to several possible combinations. In this
case during the Choice Analysis activity as many subschemas as the number
of the possible combinations of the children of the choice nodes are produced.
In Figure 2] we report an example (for simplicity we omit from thew figure the
assigned weights). In this case element « is a choice element, which includes a
simple element b and another choice element ¢ which has two children: z and y.
In particular a transform to three sequence elements, one from element b, and
two from the children element of ¢. In this way the original schema is divided
into three subschemas.

During this operation the final weights previously derived are not modified:
they will be used once derived the set of possible substructures. Using the fi-
nal weights of the leaves in each substructure, it is possible to derive a unique
value, called the subtree weight, useful for test strategy selection, as described in
the next subsection. Specifically considering each substructure, starting from its
root, the set of the partial subtree weights is normalized so that the sum of the
subtree weights over the entire set of substructure is equal to 1.

Systematic Generation

of XML Instances

Original XML Schema

1t Transformation

2nd Transformation

31 Transformation

<glement name="a’>
<gomplexType>
<choices
<element
name=""h"../>

</choicer
</complexTyper

<eglement nawme="a">
<complexType>
<sequence>
<element
name="h"../ >

<eglement name="a’>

<complexTypes
<sequencer
<element

name="c"_ >

</complexType>
</elements

<element name="a">

<complexType>
<segquencer
<element

name="c".»

<element </ zeguence> “complexType> <complexType>
name="z".> </complexType> <geguence> <gequence®
<complexType> </element> <element <element

“<choicex name="x".../ > name="y"./ >

<element </ sequencer </ sequence>
name="x"../*= </complexType> </ complexType>

<element </element> </ element>
name="y" ./ > </ segquence> </ segquence>

</complexType>
<felements

121

“/elements

</choice>
=/complexType>
</ element>

Fig. 2. Diverse subschema derived by the tag <choice>

Strategy Selection. Following the steps described so far each set of substruc-
tures has been defined, and a specific subtree weight has been assigned to each
of them . Now it is necessary to determine the test strategy to be adopted
for test cases derivation. For this we consider three different situations: either
a certain number of instances to be derived is fixed, or the percentage of func-
tional coverage is chosen, or both are selected as a stopping rule. The first is
the case in which a fixed number of instances must be derived from a specific
XML Schema. In this case XPT derives the most suitable distribution of the
derivable final instances among the subschemas previously defined. The second
situation considers the occurrences with a certain percentage of subschemas, in
other words the functionalities must covers a certain percentage of testing pur-
poses. In this case XPT selects those subschemas that will be more suitable for
testing purposes. Finally the last case is a mixed test strategy: it proposes a
certain number of instances over a fixed percentage of functional coverage.
From a practical point of view, let us discuss the implications of each strategy:

— Applying XPT with a fixed number of instances: XPT strategy can
be used to develop a fixed number NI of final instances out of the many that
could be conceived starting from the original XML Schema. This could be in
practice the case in which a finite set of test cases must be developed. Using
the subtree weights associated to each substructure, the number of instances
that will be automatically derived for each of them is calculated as NI times
the subtree weight.

— Applying XPT with a fixed functional coverage: this corresponds to
the case that a certain percentage of functional test coverage (e.g. 80%) is
established as an exit criterion for testing. In this case considering the fixed
coverage C, the selection of the substructures to be used can be derived by

3 Of course if the original XML Schema did not include any choice element, at this
point only one structure is available having 1 as subtree weights.

122 A. Bertolino et al.

ordering in a decreasing manner the subtree weights, multiplying them times
100 and adding them together, starting from the heaviest ones, until a values
greater than or equal to C is reached.

— Applying XPT with a fixed functional coverage and number of
instances: in this case the above two strategies are combined. XPT first
selects the proper substructures useful for reaching a certain percentage of
functional coverage (as described above). Then considers the subtree weights
of these selected subschemas and normalizes them so that their sum is still
equal to 1. The new derived subtree weights are finally used for distribut-
ing among the selected substructures the fixed number of instances to be
automatically derived.

5 The TAXI Tool

In this section we briefly describe the architecture of the TAXI tool, which im-
plements the XPT strategy. The current version of TAXI can manage almost
all elements of the XML Schema elements providing the set of required XML
instances, even if some improvements are currently under implementation, such
as the possibility of supporting namespaces or the usage of ontology for values
assignment. TAXI will be released as open source code as soon as the develop-
ment of the new added functionalities will terminate. Nevertheless in its current
version it has been used as a proof-of-concept tool for verifying the efficiency
and the applicability of the XPT methodology, providing encouraging results.
TAXT takes an XML schema as input and parses it by using the W3C Document
Object Model(DOM) [I7]. It is mainly divided into five components (see Figure
B): User Interface, TSS, Preprocessor, SIP (Skeleton of Instances Producer), FIP
(Final Instance Producer), and VP (Values Provider).

Specifically the User Interface manages the interaction with the user, who can
influence and control the instance generation process accordingly with his/her
specific requirements. By means of this components TAXI acquires the input
to start the generation of the test case set. One of the tasks required to the
user is therefore the selection of the XML Schema from which he/she wants to
derive the valid instances and from this point ahead the generation proceeds
automatically. User also needs to set the weights of the schema elements, and to
select the test strategy. The weights as described in the previous section are used
to represent the amount of test cases from different subtrees. Using weight and
test strategy together TAXI can generate the proper amount of test cases from
each subtree. The XML Schema is then passed to the Preprocessor component,
which implements the preprocessor activities described in the previous subsec-
tion. The scope of this component is solving the tags group, attributeGroup,
ref, type, restriction, extension and all. After this preprocessing stage,
the input file is not a well-formed schema anymore, because the elements in
the schema are not unique. In this so called “schema” there remain sequence,

Systematic Generation of XML Instances 123

File System

é

XML file
Instance
based on
xsd 1

v XML
/ N

Schema 1

XML
Schema 2

XML file
| Instance
1 \ based on

;R xsd 2

—

=

R

XML
Schema n

‘ Category Partition Interface ‘

YA M-

Q XML file
Instance
C based on

N
. _.xsdn
N——|
Stored —_—
Data Sets

i> Control Console - User Interface

Weighted
XML
Schema

XML
Schema

Fig. 3. Architecture of the tool TAXI

choice and simpleType elements. Then TAXI passes this “schema’” to Test
Strategy Selector. As seen, the first step of this component is choice solver,
which produces multiple sub-schemas depending on the number of the choice
constructs. At this point the component SIP (Skeleton of Instances Producer)
retrieves and analyses each sub-schema, extracting from each element only the
necessary information useful for the construction of the final instances. Mean-
while the weight of the child elements will be passed by the interface, and be
attached to the sub-schema. Combining the weights with the test strategy, the
total test cases can be calculated by TAXI automatically. In particular, when
the condition minOccurrences < maxOccurrences holds, collaborating with the
component VP (Values Provider), it establishes the exact number of occurrences
of each element. By using the collected data, the STP component develops a set of
skeleton files. These are mainly modified tree representations of the various sub-
schemas in which special tags and instructions are introduced to make the final
instances derivation easier. Specifically the number of skeletons to be produced
results from the all possible combinations of the established occurrence values
assigned to each element. Reflecting the activities described in the previous sec-
tion the skeletons of instances so produced are finally analyzed by the FIP (Final
Instance Producer) component. It uses the instructions provided by the SIP com-
ponent in the skeleton, and collaborates with the VP component for receiving
the correct values to be associated to each element. The final result is a set
of instances, which are by construction conforming to the original schema and
classified by sub-schemas. The VP (Values Provider) component has the task
of providing the established occurrence of each element and the values to be
assigned to each elements during the final instances derivation.

124 A. Bertolino et al.

6 Considerations on Applicability of the Approach

The IMS Content Packaging Specification provides the functionality to describe
and package learning materials, such as an individual course or a collection of
courses, into interoperable, distributable packages. Content Packaging addresses
the description, structure, and location of online learning materials and the def-
inition of some particular content types.

As stated above the TAXI tool is still undergoing implementation, however
in this section we provide a sample of its functionality, discussing its application
within the e-Learning domain. In this domain, our purpose is to reduce the
probability of having incorrect interactions among cooperating e-Learning tools:
if the test cases are selected appropriately, the tools that pass all of them should
be able to interoperate with the other tools that have been submitted to the
same test campaign. Of course, in many cases the generation of all the possible
instances could not be feasible given that the number could not be finite (consider
for instance when an element has an unbounded mazOccurences attribute).

Learner Information Package is a IMS standard collection of information
about a Learner (individual or group learners) or a Producer of learning content
(creators, providers or vendors). As described in the IMS web sitd] the IMS
Learner Information Package (IMS LIP) specification [I8] addresses:

“...the interoperability of internet-based Learner Information systems
with other systems that support an Internet based learning environ-
ment. The intent of the specification is to define a set of packages that
can be used to import data into and extract data from an IMS compliant
Learner Information server, i.e. servers that in a eLLearning environment
collects data concerning pupils and/or eLearning content providers. A
Learner Information server may exchange data with Learner Delivery
systems or with other Learner Information servers. It is the responsibil-
ity of the Learner Information server to allow the owner of the learner
information to define what part of the learner information can be shared
with other systems. The core structures of the IMS LIP are based upon:
accessibilities; activities; affiliations; competencies; goals; identifications;
interests; qualifications, certifications and licences; relationship; security
keys; and transcripts”.

It is not difficult to understand the importance of conformance testing when
such kind of open specifications are considered. The prefigured scenario is that
different stakeholders will independently develop complex software systems that
should all be able to take as input or generate in output conforming documents.
The tacit assumption is that having considered an agreed specification they
would be able to interoperate. Clearly this is far from being completely true.
Even a simple XML based specification gives raise to infinite different XML
instances. In particular it is possible to specify the same thing in many different
ways but it is not difficult to find different parsers that will disagree on the

4 http://www.imsglobal.org

Systematic Generation of XML Instances 125

conformance of an XML instance when the original specification imports many
nested name spaces or complex tree structure.

In the next subsection we first analyse the dimensions of the feasible legal
instances, for a given schema.

6.1 Number of Conforming Instances

Two different factors influence the variability of legal instances: instances can
have different values for the same element (Data variability); or, instances can
have different structures, i.e., they could contain different elements or differ-
ent occurrences for the same element (Structural variability). For the case of
structural variability three main reasons can be identified:

— the order of the elements in the instances (for instance the tag <all> leads
to such kind of variability)

— the presence or otherwise of elements and/or attributes in the instances (for
instance the tags <choice> or <use> lead to this situation)

— the number of possible occurrences of an element in the instances (due to
the presence of attributes minOccurrences and mazOccurences)

Starting from these considerations and only focusing on structural variability,
the number of correct instances foreseen by a certain XML Schema (represented
as a tree structure), can be derived using the following formulas:

n

ChoiceNode = 2HOptionalAttributes} Z Subtree; (1)
i=1
)) n

AlIN ode = 2#{OptionalAttributes}) H Subtree; (2)

i=1

n
SequenceNode = H Subtree; (3)
i=1

maxzOccur n
minMaxzOccur Node — 2ﬁ{OptionalAtt'ributes} Z (H Subtreej)i (4)

i=minOccur j=1

LeafNode = 2#HOptionalAttributes} (1 0. O ceur — minOccur) (5)

In the formulas above, the variable n indicates the number of different subtrees
of a given node. The name of the left member of a formula indicates when to
apply it. For instance if the node contains a <choice> tag the formula to
apply will be the first. In order to calculate the number of possible instances a
simple visit of the XML Schema tree is sufficient. However in the general case
this number cannot be calculated when there are unbounded occurrences of an
element or loops in the structure of a subtree: for example, a complexType that
in one of the corresponding subtrees contains an element of the same type.

126 A. Bertolino et al.

Just to give a flavor we calculated the number of possible structurally differ-
ent instances that can be generated starting from the LIP XML Schema [I§].
According to the formula, under the restrictive assumption that no maxOccur-
rences attribute can assume values greater than three, from the schema [I§]
we calculate that there are 78912 valid instances that can be generated from
the main element “product”. To reduce the number of equivalent instances, we
use boundary conditions strategy: when the minOccurences < maxQOccurences,
we use only the minimum value and maximum value to do the combination.
With this simplified method, 35200 valid instances are obtained from the given
schema.

i
-dcontentype B—

- - -

| contentypelype |

| o | refeavamee T

| N

| l |

| referential | |

|

| | N

| | | : |

= | | |
! | | |

| | e -

|

' |

|

|

|

Fig. 4. Partial schema tree

This simple result can probably provide the most intuitive reason to suggest
the use of a systematic approach to the generation of XML instances for testing
purpose. Given that only a small part of the instances can be used for testing
purpose it is absolutely necessary to apply a systematic strategy for the deriva-
tion of the test cases. The strategy should permit to focus on conditions that
the tester could judge particularly critical in a specific setting. For instance for
a particular application the tester could judge the variability on the number
of occurrences more important than the order of the elements. Considering the
schema that was presented in Fig @l there are two choice elements: “choicel”
is the child element of contentype, “choice2” is element “referential”, which is
a child element of “choicel”. We set the weight for “choicel” first. There are
three child elements in this complexType, we set the weight of “referential” as
0.5, the weight of “temporal” and “privacy” are 0.3 and 0.2. Then consider the
weight for another choice element “referential” which has three child elements
as well. We set the weight of “sourceid” as 0.3, “indexid” as 0.2, and the other

Systematic Generation of XML Instances 127

one as 0.5. After solving choice 5 subtrees are derived. TAXI can calculate the
weights for each subtree automatically according to the weights of choice nodes.
The weights of these five sub-schemas are given below.

The weight of subtree that includes “soureid” is 0.15

— The weight of subtree that includes “indexid” is 0.10

— The weight of subtree that includes “soureid” and “indexid” is 0.25
The weight of subtree that includes “temporal” is 0.3

— The weight of subtree that includes “privacy” is 0.2

6.2 XPT vs. Random Generation

The possibility of automatically deriving instances from a XML Schema is an
emerging problem in many fields of application. As mentioned in Section [some
tools have been implemented to this purpose. However all of them rely on the
random generation of instances, and do not implement any systematic and spe-
cific testing strategies. In this section we want to compare the performance of
such a kind of existing tools with our tool TAXI. Specifically we select XMLSpy
[11], which is an industrial standard XML development environment for model-
ing, editing, debugging, and transforming all XML technologies. For generating
the instances, XMLSpy asks the user to perform some preliminary configuration
settings, including: filling elements and attributes with data, whether generat-
ing the non-mandatory elements and attributes, generating a priori selection of
mandatory choice element or not, and how many elements should be generated
when mazOccurrences is more than one. Thus XMLSpy is different from TAXI
both in the strategy implemented and in the typology of instances obtained. We
list the mains aspects that characterize the two tools in the following.

1. The amount of instances: XMLSpy generates several configurations, but from
each of them only one instance can be derived. TAXI has the capability of
deriving large quantity of instances covering systematically all the aspects
of a specific XML schema.

2. The value of elements: XMLSpy always gives a same fixed value for each data
type. For instance the <date> type is fixed to “1967-08-13”, and <string>
type to “string”. TAXI has the possibility of declaring a specific set of values
for each data type or randomly generating as many values as required.

3. The solution of <all> elements: XMLSpy does not make difference in deriv-
ing instances when there is a <all> or <sequence> element, i.e. in the two
cases the derived instances will have the same structure. TAXI generates all
the possible combinations of the <all> children element, and then randomly
selects one from them.

4. The solution of <choice> elements: In presence of a specific request from
the user, XMLSpy can get instances with the first child element of <choice>
element, otherwise XMLSpy leaves the content of choice element as empty.
TAXI derives diverse instances for each of the <choice>’s children elements,
covering in this manner all the possibilities.

128 A. Bertolino et al.

5. The solution of occurrences: in XMLSpy all the values of occurrences must be
fixed between 1 to 99. TAXI leaves the user both the possibility of declaring
the values of occurrences or using the boundary values. In case of unbounded
occurrences, if the user does not set a preference value, TAXI adopts a
prefixed bound. The occurrences values are then combined to get instances
with variation structures.

Considering a complex schema, TAXI nearly generates all possible combina-
tions of complex elements and occurrences, and each instance has different values
inside, while the instances from XMLSpy vary only in the amount of repeated
elements. Concluding despite the good performance of XMLSpy, for the instance
generation this tool applies a quite simple algorithm, which gives only few flexi-
bility to the user and does not attempt to cover all the input domain. From the
tester’s point of view the derived instance cannot cover all the declared schema
elements and consequently the functionalities of the application to be tested.
Thus it could be claimed that TAXI is able to provide a test strategy, which is
more comprehensive and covers all weaknesses of XMLSpy.

7 Conclusions

We have introduced the XPT approach for the systematic derivation of XML
Instances from a XML Schema. XPT applies to the XML notation a well-known
method for software black-box testing. Given the pervasiveness of XML in web-
based and distributed applications, we are convinced that the proposed method
can be very useful to check the quality of applications via a rigorous test cam-
paign. In generak, we are interested in generating both valid and invalid in-
stances (the latter for robustness test). On the tester’s side, XPT targets the
long-standing dream of automating the generation of test cases for black-box
testing, which is routinely done by expert testers that analyse specifications of
the input domain written in natural or semiformal language. If the input is for-
malized into XML Schema, then XPT can provide a much more systematic and
cheaper strategy. The work we have described is still undergoing implementa-
tion. We will continue investigating the applicability to real-world case studies, in
particular within the e-Learning domain. The most challenging issue that comes
out from the investigation in this paper is the infeasibly high number of test in-
stances that would be generated, therefore the identification and implementation
of sensible heuristic to reduce the generated instances is compelling.

References

1. W3CXML: W3cxml. http://www.w3.org/XML/ (1996)

2. W3CXMLSchema: W3c xmlschema. http://www.w3.org/XML/Schema (1998)

3. XMLTestSuite: ~ Extensible markup language (xml) conformance test suites.
http://www.w3.org/XML/Test/ (2005)

4. NIST: Software diagnostics&conformance testing division: Web technologies.
http://xw2k.sdct.itl.nist.gov /brady/xml/index.asp (2003)

11.
12.
13.

14.

15.

16.

17.

18.

Systematic Generation of XML Instances 129

RTTS: Rtts: Proven xml testing strategy. http://www.rttsweb.com /services/
index.cfm (nd)

SQC: Xml schema quality checker. http://www.alphaworks.ibm.com/tech/xmlsqc
(2001)

W3CXMLValidator: W3c validator for xml schema. http://www.w3.org/2001/03/
webdata/xsv (2001)

XMLJudge: Xml judge. http://www.topologi.com/products/utilities /xmljudge.
html (nd)

EasyCheXML: Easychexml. http://www.stonebroom.com/xmlcheck.htm (nd)

. Li, J.B., Miller, J. In: Testing the Semantics of W3C XML Schema. COMPSAC

2005 (2005) 443 — 448

XMLSpy: Xml spy. http://www.altova.com/products ide.html (2005)

Toxgene: Toxgene. http://www.cs.toronto.edu/tox/toxgene/ (2005)
SunXMLInstanceGenerator: Sun xml instance generator.
http://wwws.sun.com/software/xml/developers/instancegenerator/index.html
(2003)

Ostrand, T., Balcer, M.: The category-partition method for specifying and gener-
ating functional tests. Communications of ACM 31(6) (1988)

Basanieri, F., Bertolino, A., Marchetti, E.: The cow suite approach to planning
and deriving test suites in uml projects. In: Proc. Fifth International Conference
on the Unified Modeling Language UML 2002, LNCS 2460, Dresden, Germany
(2002) 383-397

Bertolino, A., Gao, J., Marchetti, E., Polini, A.: Partition testing from xml schema.
Technical report ISTI-45/2005 (2005)

DocumentObjectModel: Document object model. http://www.w3.org/DOM/
(2005)

AAVV: IMS learning information package v.1.0.1. On-line at:
http://www.imsglobal.org/content /packaging/cpvlp2pd/

imscp oviewv1p2pd.html (2005)

http://www.rttsweb.com/services/index.cfm (nd)
http://www.rttsweb.com/services/index.cfm (nd)
http://www.w3.org/2001/03/webdata/xsv (2001)
http://www.w3.org/2001/03/webdata/xsv (2001)

Transformations of UML 2 Models Using
Concrete Syntax Patterns*

Markus Schmidt

Real-Time Systems Lab
Darmstadt University of Technology
D-64283 Darmstadt, Germany
markus.schmidt@es.tu-darmstadt.de

Abstract. Model transformations are an important part of the MDA
approach. The process of converting a PIM into a PSM should be done
by certain model transformations. While there are many transformation
languages for UML available they all share the discrepancy between the
syntax of the transformation specification language and the visual UML
syntax. Today model transformations are defined either in a textual man-
ner or in a language that uses constructs from the underlying metamodel.
This paper presents a novel approach to specify model transformations
as patterns in the concrete syntax of UML 2. These patterns are easier
to read than usual transformation specifications and use only standard
UML 2 constructs. This is achieved using the built-in extension mech-
anism of UML 2 - the Profiles. Besides the specification, these profiles
offer the application of patterns within any UML 2 compliant modeling
tool. As such, these patterns can be seen as a front-end for model trans-
formation.

Keywords: Model Transformations, Patterns, UML 2 Profiles.

1 Introduction

Patterns and model transformations are closely related in model-driven software
engineering. While patterns specify source and target model the execution of
model transformations creates the target model. Transformations between mod-
els is a key activity within the MDA [I] framework. The importance of model
transformation is stressed by Sendall and Kozaczynski [2] as they describe it as
”The heart and soul of model-driven software development”.

Such transformations can be defined to cross different modeling languages or
to change models within the same language. Graph based transformations is the
most popular way to express model transformations. This seems to be a natural
choice since most modeling language are also graph based. An overview of graph
transformation in the context of model-driven engineering is given by Grunske
et.al [3]. They propose some requirements a good transformation language should

* Work supported in part by the European Community’s Human Potential Programme
under contract HPRN-CT-2002-00275, SegraVis.

N. Guelfi and D. Buchs (Eds.): RISE 2006, LNCS 4401, pp. 130 2007.
© Springer-Verlag Berlin Heidelberg 2007

Transformations of UML 2 Models Using Concrete Syntax Patterns 131

hold. One of these requirements states that ”transformation rules should be
easy to understand”. While it is necessary to use transformation rules that are
understandable by themselves, it is also important that there is a certain kind
of similarity between the transformation rules and the models to transform.
One common way to describe transformation rules for a modeling language
(e.g. UML) is to use the abstract syntax of this language (e.g. metamodel of
UML). One major drawback of this method is the discrepancy between abstract
and concrete syntax. Transformation rules in abstract syntax can easily become
complex and hard to read. For the case of UML the user must also know the
metamodel. As UML is a very extensive language this is a very challenging task
for most users. As an example of a transformation rule based on a metamodel
we will present a simple transformation within a UML statemachine. Figure [I]
shows the insertion of a transition beta between the state A and state C.

stm Sample J stm Sample J
transform
beta
A [[

Fig. 1. informal description of a transformation that adds a transition

We use QVT [4] an an example of a transformation language that is based on a
metamodel. The QVT rule for the transformation in figure[Ilis shown in figure[2
The transformation rule itself is understandable but there is little relation be-
tween the statemachine and the transformation rule. Only a single transition
must be inserted but the rule contains many more elements.

AddTransition

«domain» «domain»

sm :Statemachine sm :Statemachine

state1 : State state2 : State uml uml state1 : State state2 : State

.
--- --= tran : Transition
name = ‘A’ name = ‘C* < C>_ > name = ‘A’ name = ‘C'

trigger : Trigger

event : SignalEvent

signal : Signal

name = ‘beta’

Fig. 2. QVT transformation to add a transition between two states

132 M. Schmidt

Another drawback is the different notation of the model element. States and
transitions have their special notation in a statemachine diagram. But as the
transformation language is based on the metamodel all elements have the same
rectangle notation.

What we are looking for is a methodology that gives the user the ability to
specify model transformations in the same visual language as he develops his
models. As our focus lies on UML 2.0 [5], that means specifying transforma-
tions with standard constructs of UML 2.0. If this would be possible, it has two
important advantages for the user

— it is not necessary to learn another language
— it can be done with any UML 2.0 modeling tool

Before we describe our approach in the remainder of this paper we compare
our intention with related work in the next section. Section Bl exemplifies the
fundamentals of our work - the UML 2.0 Profiles. Some motivating examples of
pattern specification with profiles are given in section @l Section [describes our
approach as a front-end for model transformation. A classification as a general
model transformation approach is shown in section [l Section [concludes the
paper with a discussion of further directions.

2 Related Work

Patterns and especially their relationship to model transformation have been
subject of research before. This section outlines different transformation lan-
guages that are able to transform UML models. We will pay special attention to
their transformation syntax and universal applicability.

Story diagrams [0] are a graph rewrite language that is heart of the open source
modeling tool Fujaba [7]. Story diagrams adopt some UML 1.x diagrams. Class
diagrams are used for the specification of graph schemes, activity diagrams for
the graphical representation of control structures and collaboration diagrams as
a notation for graph rewrite rules. A major disadvantage is that patterns must be
specified in the abstract syntax. Another drawback comes from the tool Fujaba,
which is the only tool that uses story diagrams. Fujaba can only generate code
for Java, so anyone who uses story diagrams is bound to Java code.

Architecture Stratification [§] is an approach that connects multiple views on a
single system with refinement translation. There exists an implementation SPin
[9) which supports the automatic transformation of models into more detailed
versions and thus represents basic support for Architecture Stratification. Since
this implementation is a plugin for Fujaba it has the same benefits and drawbacks
as Story diagrams.

The model transformation framework Mercator [10] uses stereotypes to control
the transformation. It is designed to be used in the MDA context by transforming
a PIM into a PSM. Only UML class diagrams are supported and the current
prototype supports basic UML-to-Java transformations.

Transformations of UML 2 Models Using Concrete Syntax Patterns 133

A graphical transformation language for UML is UMLX [II]. UMLX uses
standard UML class diagrams to define information schema and their instances,
and extends the class diagrams to define inter-schema transformations. A trans-
formation diagram uses special visual elements and as such can not be used with
standard UML editors. Transformations are metamodel-based and as such not
very readable if other diagram types than class diagrams are used.

The upcoming standard language QVT [4] from the object management group
seems to be a natural choice for specifying pattern for UML 2.0 models since
QVT and UML 2.0 are both based upon MOF [12]. Transformations are written
in a relational language either in a textual notation or in a graphical notation.
Graphical transformations are expressed using extended UML object diagrams.
So a transformation rule for statecharts contains only the rectangles of the meta-
classes for state and transition and not the typical round boxes for states or the
transition arrows.

Baar and Whittle [I3] proposed the pattern language PICS (patterns in con-
crete syntax) as a more readable notation for transformation rules. They modify
the language of the underlying metamodel with some information from the syn-
tax of the concrete model to generate PICS. While the resulting transformation
rules are more readable than QVT transformations, it is necessary to create
a new PICS metamodel for every model the patterns should work on. So one
PICS metamodel to transform class diagrams and one to transform statecharts.
Furthermore, a special tool is necessary to create these transformations.

3 UML 2.0 Profiles

This section gives a short introduction in the foundation of our work - the UML
2.0 profiles. Some interesting changes were made in the transition from UML 1.x
to UML 2.0 which are important for this work.

Since version 2.0 the profiles are a separated package of the UML metamodel
defined in the Superstructure document [5]. This package is shown in figure 3

A profile is now a specific kind of a package and contains some restrictions on
the possible extensions of a reference metamodel (e.g UML and CWM). We will
not discuss these restrictions in this paper and refer the reader to the specification
document [5].

The primary extension construct is the stereotype, which is a limited kind
of metaclass. A stereotype must always be used in combination with a meta-
class that it extends. The notation for an extension is an arrow pointing from a
stereotype to the extended metaclass.

Two stereotypes are defined in figure @l The stereotype Clock extends the
metaclasses Component and Class and contains an attribute resolution. The
stereotype Creator extends only the metaclasses Class and has two attributes.
The additional constraint required states that every UML 2.0 class must be
annotated with this stereotype. As you can see it is possible for a stereotype to
extend more than one metaclass and vice versa a metaclass can be extended by
more than one stereotype.

134 M. Schmidt

Packagelmport Association
{from Constructs} {from Constructs}
appliedProfile N T .
subsets packagelmport] metaclass extension
Package b gelmp ProfileApplication Class / | / . Extension
1 « 1 / « | /isRequired : Boolean
Aﬁ importedProfile 1
{subsets importedPackage}
Profile
4 ownedEnd 1
ownedStereotype type -
{subsets importedPackage} Stereotype ExtensionEnd
1 B
1 i
metaclassReference "
{subsets elementimport} Elementimport
o1 {from Constructs}
. * * +icon
metamodelReference Image
{subsets packagelmport} Packagelmport Property
0.1 N {from Constructs} {from Constructs}
Fig. 3. Profiles package from UML 2.0 Superstructure [5]
«metaclass» «stereotype»
Component Clock
resolution: Integer
«dock»
«creator, clock» resolution =2
«metaclass» «stereotype» StopWatch e
Class {required} Creator «creator»
author: String author ="Jones"
date: String date ="02-04-15"

Fig. 4. Stereotypes extend metaclasses Fig. 5. Application of stereotypes with pa-
rameters

The assignment of values to attributes of a stereotype is done using a UML
comment. The body of this comment holds the assignments in form of
name-value pairs. This is shown in figure [f] where the UML 2.0 class StopWatch
is annotated with stereotypes from figure @l

The profiles of UML 2.0 offer two important features. First, the ability to
use a profile as a package and as such to import other profiles and package to
provide a hierarchy of profiles. Second, to restrict the application of a stereotype
to model elements that are instances of the correct metamodel element.

4 Using Profiles to Specify Transformations

This section shows some motivating example on how UML 2.0 Profiles can be
used to specify pattern in the concrete syntax of UML 2.0 models.

Transformations of UML 2 Models Using Concrete Syntax Patterns 135

4.1 Singleton

Our first attempt is to specify a very basic pattern - the singleton. Even though
it is a very simple example, it is rich enough to explain the basic idea of our
approach.

Figure [0l shows the class Demo in two different ways. On the left hand side
with an annotated stereotype singleton that indicates that this class is (or should
be) a singleton class. The class on the other side has all the elements (attribute,
constructor, method) that makes a class to a singleton class.

«singleton» Demo
Demo

- instance: Demo

- Demo()
+ getinstance(): Demo

Fig. 6. class with singleton stereotype and class with singleton elements

The left hand side shows the application (via annotated stereotype) of the
singleton pattern and the right hand side the expanded pattern. So the classes
can be seen as the source and the target of this pattern. What is missing is a way
to describe the transition from source to target model with standard constructs
of UML 2.0.

The first step is to define a profile that allows the annotation of a stereotype
to a class. Figure[f shows this profile and the application of this stereotype. Now
the model is well-formed since we have a profile defining the used stereotype and
this stereotype is annotated to a UML class. But this model gives no hints about
the necessary transformations to expand the singleton pattern.

Test

«singleton»
Demo

«profile» Sample

«apply»
| __«apply>_ > «metaclass» | «stereotype»

Class Singleton

Fig. 7. Profile for singleton and application of this profile

The idea to specify these transformations is to use the expanded singleton
class from Figure [f] and annotate all elements that must be added. This kind of
annotations can be realized with stereotypes, whereas these stereotypes represent
model modifications.

136 M. Schmidt

Figure [shows a UML 2.0 model that uses a certain profile, whereas all
stereotypes extend the topmost metamodel element Element. Therefore, every
model element of UML 2.0 can be annotated with these stereotypes. Stereotype
New stands for the addition of a new model element and This specifies the
reference element of the pattern. Package Singleton contains the expanded class
with annotated stereotypes to describe the role of model elements in the pattern.
The reference element is the class itself and the other three elements must be
added if the pattern is expanded.

The package Singleton can be seen as a specification of the singleton pattern
since both the structure and the behavior of the pattern are specified. It is
interesting that the profile from Figure [can be extracted from this package.
Since the reference element is a class and the name of the package is Singleton
we can automatically generated the profile shown in Figure [1

Singleton «profile»
PatternSpec
«this»
Demo «stereotype»
- | < This
«new» - instance ____f“'_’[’?}’i’_> «metaclass»
- Element
«new» - Demo() < «stereotype»
«new» * getlnstance() New

Fig. 8. Profile for pattern specification and application as a singleton definition

Moreover, we can automatically extract the transformation rules from the
package. For every element that is annotated with New we create a transfor-
mation rule that adds the element to the model. These two steps, creation of
the profile and creation of the transformation rules, can be done by a program.
Figure [shows the two types of data that such a program produce.

«profile» PSingleton

]

add attribute "instance"
add constructor
add method "getInstance"

«metaclass» «stereotype»
Class Singleton

Fig. 9. generated profile and transformations

On the left hand side the profile that contains the stereotype for the appli-
cation of the pattern. Note that the extension of the metaclass Class restricts
the application of the stereotype to UML classes. So the profile offers a simple
kind of validation. The transformations are shown on the right hand side. The

Transformations of UML 2 Models Using Concrete Syntax Patterns 137

presentation is very informal and only given for completeness. An implementa-
tion will create the transformation rules with respect to the used transformation
engine.

One major drawback of the specified pattern is the static nature. This pattern
has no parameters and can only be applied to a class called Demo.

4.2 Patterns with Parameters

This section shows how parameters can be specified within our approach. The
ability to use parameters is based on attributes of a stereotype and on a special
syntax for element names. As described in section [J a stereotype can have an
attribute that can be assigned with a value via a UML comment. This gives us
the ability to set the value if the pattern is applied to a model element. What
is missing is the ability to define an element name, or parts of a name, as a
parameter. But this is already defined in the context of the UML 2.0 template
mechanism. The UML 2.0 template package contains string expressions that
defines a syntax for strings with parameters. String expressions appears between
$ signs, where parameters are shown between angle brackets.

An application of these string expressions is shown in Figure Two states
are shown, whereas the Timeout state has a constant name and the other name
is a parameter. As this state is also the reference element of this pattern, the
pattern can be applied to any state and the parameter $name$ holds the ac-
tual name. Other parameters are the time inside the event of the transition and
the event that specifies the liveness of the reference state. As a whole this pat-
tern specifies the verification of a liveness event of a single state. A transition
to a timeout state is performed if this event is not received within a certain
period.

«profile»
PatternSpec
Timeout
«stereotype»
< This
i «add»)
$<name>$. Timeout «metaclass» «stereotype»
$after(<time>)$ | __«apply» > Element ot
«new»
$<alive>$ «stereotype»
New

Fig. 10. Profile for a state with timeout

The two types of data that can be generated from the specification of the
timeout pattern is shown in Figure[IIl The profile shows the stereotype Timeout
that extends the metaclass State. Two parameters of the pattern are defined
as attributes of the stereotype. The name parameter is implicit, because this
assignment is automatically done if the pattern is applied to a state.

138 M. Schmidt

«profile» PTimeout

«metaclass» «stereotype» ‘ add state "Timeout"
State b Timeout add transition "after (<time>)"
from <name> to "Timeout"
time: String add transition <alive>
alive: String from <name> to <name>

Fig. 11. Generated profile and transformations

ACC 3
throttle pressed

speed reached N
«timeout»

brake pressed

road free L
object ahead time=30 sec
alive=radarOK
brake pressed object ahead
<——

«timeout»
Keep distance

brake pressed

I
time=10 sec
alive=radarOK

Fig. 12. Application of the timeout pattern

An application of this pattern is shown within a simplified statechart of an
adaptive cruise control in Figure[I2l The timeout pattern is applied to two states
with different values for the parameters.

5 Realization of Our Approach

As we arrogated in the introduction, is should be possible to integrate our ap-
proach easily in any UML modeling tools. While we currently working on an
integration in the modeling tool Together Architect [14], we present only the
ideas in this section.

First, we present an overview of the development process within a single mod-
eling tool. After this, we present the fundamental profile in more detail.

5.1 Development Process

The whole process of specification, application and expansion of model transfor-
mations can be done with a single modeling tool. Figure [[3] shows this process
in an abstract manner.

Transformations of UML 2 Models Using Concrete Syntax Patterns 139

Transformations
Constraints

«profile» «profile» . expanded
PatternSpec > Generator PPattern Moditier | [T P Mo
N N
| |
| «apply» | «apply»
i H
1 i] 1
Pattern UML2 Model

Fig. 13. Process within a single modeling tool

The only models that a user must create are the two packages (Pattern and
UML2 Model) at the bottom of this figure. The Pattern package contains trans-
formation specification (pattern). The Generator uses this pattern and creates a
profile for the application of the pattern and some data containing transforma-
tion and constraints for the expansion of the pattern. The created profile must
be used to apply the pattern to the model. The expansion is performed by the
modifier who takes the transformations and constraints to generate an expanded
model. The most abstract parts of the process are Generator and Modifier. The
implementation of these parts depends on the used modeling tool since it is nec-
essary to read and write models. So for most tools, Generator and Modifier will
be realized as plugins that use the tool API to access the models. Another way
is the realization as textual QVT scripts. So any modeling tool that supports
QVT will be able to execute the Generator and Modifier.

5.2 Profile to Specify Transformations

In order to be able to specify transformations a fundamental profile must be given
that must be applied to transformation specifications. This profile PatternSpec
is shown in figure [[4] and contains stereotypes for basic transformation opera-
tions and notational purposes. We use some abstract stereotypes for structural
purposes and to apply some constraints.

We omitted some constraints to reduce the complexity of the figure. The real
profile contains more constraints that prevents invalid combinations (e.g. This
and New).

If a model element as part of a transformation specification is annotated with
a stereotype the meaning of this element is as follows:

— This element is reference point of the pattern
— New element will be added

140 M. Schmidt

«profile» PatternSpec |

context PatternDef inv: B

«metaclass» «stereotype» L __ o ______ select (self.base.stereotypes
Element b PatternDef ->isKindOf (PatternDef))

->size() <= 2

context Changes inv: B
«stereotype» «stereotype» select (self.base.stereotypes
B R IS dabieiey ->isKindOf (Changes))
Notation Changes Cssize() <= 1
«stereotype» «stereotype» «stereotype» «stereotype» «stereotype»
This Not New Add Del

Fig. 14. Profile for the specification of patterns

— Add element will be added only if it is not available
— Del element must be available and will be deleted
— Not element must not be available

6 Classification as a Model Transformation Approach

The presented approach can be seen as a front-end for a graph based model
transformation approach.

We will give a short classification of our approach in relation to the classifi-
cation scheme proposed by Czarnecki and Helsen [I5]. They present the result
of their domain analysis as a set of feature diagrams. For lack of space we focus
only on the features of transformation rules.

Figure [T8 shows the feature diagram for transformation rules form Czarnecki
and Helsen [15]. Features of our approach are marked with bold rectangle and
bold typeface.

As source and target model are represented within a single UML 2.0 diagram
a transformation rule is specified in a combined LHS/RHS form. Variables of
or transformation rules are meta-attributes of stereotypes. As an assignment
of such meta-attributes can only be done with UML 2.0 comments, all vari-
ables are untyped. This is a weakness of our approach but unavoidable if we
use the concrete syntax of UML 2.0. It is also possible to add some logic in
form of OCL-Constraints, even though we didn’t use constraints in previous
examples.

Patterns are specified as parts of UML 2.0 diagram and as such in graph-
ical form with the concrete syntax of the model to transform. Every pattern
is syntactically typed because of the relationship between a stereotype and the
extended metaclass. So it is an easy task for a modeling tool to validate the
application of a pattern.

Transformations of UML 2 Models Using Concrete Syntax Patterns 141

| Transformation Rules |

Legend:

—e Mandatory feature
—O Optional feature

@)
Q
Bidirectionality

| LHS/RHS Syntatic Separation |

& |nclusive-or feature
< Alternative feature

QO
LHS/RHS

Variables

|Untyped| | Semantically Typed | |Patterns| | Non-Executeable | |Executeable

Syntactically Typed

| Imperative | | Declarative
Syntax
NN
Abstract Concrete | Untyped | | Semantically Typed |
| Textual | |Graphica||

Fig. 15. Features of transformation rules

7 Conclusions and Outlook

The challenge of this paper was the development of a method to specify model
transformations for any UML 2.0 diagram in the same concrete visual syntax
and with no other than the standard constructs of UML 2.0.

Since transformations are not supported directly (only as limited patterns in
collaboration diagrams) in UML 2.0 it was reasonable to make use of the exten-
sion mechanism of UML 2.0 - the profiles. First the extension mechanism was
used to provide a profile to specify transformations with the contained stereo-
type. A usual UML 2.0 diagram became a transformation specification simply
through the annotation with a stereotype form this profile.

After that we realized that such a transformation specification contains enough
information for the application and expansion of itself. Information from a trans-
formation specification can be used to generate two different types of data

— a profile describing the application and containing information for syntacti-
cally validation
— a transformation with constraints to perform the expansion

142 M. Schmidt

The first type of data can be used immediately within a UML 2.0 modeling
tool to use the specified transformation in some diagrams. Since this data is given
in the form of a profile, the user has a simple kind of syntactically validation.

The other type of data can not be used directly since UML 2.0 doesn’t provide
any kind of model transformation. The generation and the application of these
data depends on the used modeling tool.

This approach turns out to be a front-end for graph-based model transforma-
tion of any UML 2.0 diagram. The transformation rules are specified as pattern
in the concrete visual syntax of UML 2.0. This is an important benefit compared
to other model transformation languages. On the other side this is not a first-
class model transformation approach. One limitation is that source and target
model are instances of the same metamodel. It is a desired feature since we only
want to work with UML 2.0.

A real limitation is the restricted expressive power of transformations using
our approach. One simple example is a transformation rule that renames the
name of any classifier. This transformation can be specified easily in QVT, but
not with our approach. This comes form the fact that the model element classi-
fier is not a UML 2.0 model element and as such not visible at level M1. So this
approach is not able to replace metamodel based transformation languages, but
this is not the intention. The intention is the definition of high level transforma-
tions for any kind of UML 2.0 model.

This paper covers only the ground potential that UML 2.0 Profiles offer for
MDA. The ability to place models from different diagram types into a single
profile can be used to specify patterns over more than one diagram type. So it
could be possible to specify a pattern that contains structural information (e.g.
classes) and information about the behavior (e.g. statemachines).

References

1. OMG: MDA Guide Version 1.0.1. OMG. (2003) http://www.omg.org/docs/
omg/03-06-01.pdf|

2. Sendall, S., Kozaczynski, W.: Model transformation: The heart and soul of model-
driven software development. IEEE Softw. 20(5) (2003) 42-45

3. Grunske, L., Geiger, L., Ziindorf, A., van Eetvelde, N., van Gorp, P., Varr6, D.:
Using graph transformation for practical model driven software engineering. In
Beydeda, S., Book, M., Gruhn, V., eds.: Model-Driven Software Development. Vol-
ume II. Springer Verlag (2005) 91-119

4. OMG: MOF 2.0 Query/View/Transformation Final Adopted Specification
(ptc/2005-11-01). (2005) http://www.omg.org/cgi-bin/doc?ptc/2005-11-01|

5. OMG: UML 2.0 Superstructure Specification formal/05-07-04. OMG. (2005)
http://www.omg.org/docs/formal/05-07-04.pdf|

6. Fischer, T., Niere, J., Torunski, L., Ziindorf, A.: Story diagrams: A new graph
rewrite language based on the unified modeling language and java. In: TAGT 98:
Selected papers from the 6th International Workshop on Theory and Application
of Graph Transformations, London, UK, Springer-Verlag (2000) 296-309

7. Fujaba Development Group: Fujaba Tool Suite. (2006) http://www.fujaba.del

http://www.omg.org/docs/omg/03-06-01.pdf
http://www.omg.org/docs/omg/03-06-01.pdf
http://www.omg.org/cgi-bin/doc?ptc/2005-11-01
http://www.omg.org/docs/formal/05-07-04.pdf
http://www.fujaba.de

10.

11.

12.

13.

14.

15.

Transformations of UML 2 Models Using Concrete Syntax Patterns 143

Atkinson, C., Kiihne, T.: Aspect-Oriented Development with Stratified Frame-
works (2003)

Klar, F., Kithne, T., Girschick, M.: SPin - a Fujaba Plugin for Architecture Strat-
ification. In: 3rd Int. Fujaba Days 2005: MDD in Practice”. (2005) 17-23
Witthawaskul, W., Johnson, R.: An object oriented model transformer framework
based on stereotypes. In: 3rd Workshop in Software Model Engineering at The
Seventh International Conference on the Unified Modeling Language. (2004)
Willink, E.: UMLX: A graphical transformation language for MDA. In Rensink,
A., ed.: Model Driven Architecture: Foundations and Applications, University of
Twente, the Netherlands (2003) CTIT Technical report TR-CTIT-03-27.

OMG: Meta Object Facility(MOF) 2.0 Core Specification. OMG. (2003)
http://www.omg.org/docs/ptc/03-10-04.pdf.

Baar, T., Whittle, J.: On the usage of concrete syntax in model transforma-
tion rules. Technical Report 2006-002, Ecole Polytechnique Fédérale de Lausanne
(EPFL) (2006)

Borland Software Corporation: Together Architect 2006. (2006)
http://www.borland. com.

Czarnecki, K., Helsen, S.: Classification of model transformation approaches. In:
2nd OOPSLA03 Workshop on Generative Techniques in the Context of MDA.
(2003)

http://www.omg.org/docs/ptc/03-10-04.pdf
http://www.borland.com

Towards a Formal, Model-Based Framework for
Control Systems Interaction Prototyping

Matteo Risoldi' and Vasco Amaral®

! Université de Geneve
24, Rue Général-Dufour
CH 1211 Geneva 4
matteo.risoldi@cui.unige.ch
2 Universidade Nova de Lisboa
Quinta da Torre
P 2829-516 Caparica

vasco.amaral@di.fct.unl.pt

Abstract. This paper provides an overview of a starting project called
BATIC?S (Building Adaptive Three-dimensional Interfaces for Critical
Complex Control Systems). This project aims to bring a more viable
approach in the fields of Graphical User Interfaces (GUI), software mod-
eling and verification, automatic code generation, and adaptivity. The
goal is to build a comprehensive methodology for semi-automated, for-
mal model-based generation of effective, reliable and adaptive 3D GUIs
for diagnosing control systems. This can be used to assist in GUI devel-
opment for very complex systems, like industrial systems, high energy
physics experiments and similar.

1 Introduction

Developing Graphical User Interfaces (GUIs) for complex control systems is
costly, difficult and error prone. Large hardware systems as you can find in
industries, physics research centers or transportation (airplanes) have a high
complexity coming from the number of components, their hierarchical interac-
tion and the large number of parameters to be monitored at once. This poses
challenges in particular concerning the correctness of the control, the navigation
issues and the paradigm for human interaction. Therefore, it is of first impor-
tance to systematize the specification and modeling of systems, to find new ways
of interaction and to minimize the development cost of GUI production in order
to be able to test interfaces from a usability point of view.

In this paper we will present a work in progress, stating our views on how
various software engineering techniques and aspects can be integrated and co-
ordinated in a methodology to standardize and assist the development of such
interfaces. We will speak through examples about what technologies we are us-
ing for it. Finally we will briefly illustrate two case studies that are currently
guiding our work. A survey on related work, with analysis and a comparative
study of previous approaches in the field of user interface prototyping for control
systems, has been done in [4].

N. Guelfi and D. Buchs (Eds.): RISE 2006, LNCS 4401, pp. 144-{I539] 2007.
© Springer-Verlag Berlin Heidelberg 2007

Towards a Formal, Model-Based Framework for Control Systems 145

2 The General Approach

2.1 Definition of a Control System

Control systems (CS) can be defined as mechanisms that provide output vari-
ables of a system by manipulating the inputs (from sensors). The field of CS
is wide, and ranges from the very simple to the very complex. To avoid a lack
of applicability, we had to reduce the field to systems with some specific fea-
tures. The definition of a CS we use (and a very widely accepted one) is a
system which has a hierarchical organization, in which every elementary object
can be grouped with others, and composite objects (groups) can be grouped as
well, forming a hierarchical tree in which the root represents the whole system
and the leaves are the actual devices that form it. Typically this grouping will
reflect a physical container-contained composition (but it could follow other re-
lations as well). Elementary and composite objects can receive commands and
communicate states and alarms. Figure [l shows a partial example of such a sys-
tem, a simple drink vending machine (DVM). We will use it also in following
examples.

DVM Operator A

L W

(2] e
M gl |s¢
Operator Fridge S:i?y g 85
| | 8<
Tray 1 .. | Trayn Thermostate
'

Hard
Door Container araware
Operator C
Hardware Hardware

Fig. 1. An example of hierarchical control system: drink vending machine

We can see basic, low level components: the Door, the Container and the
Thermostate. These get input directly from the hardware (through sensors, for
example), and have simple states which depend on this input (e.g. the Ther-
mostate might have states TempOk, TempWarning and TempError, depending
on a temperature sensor). These basic components are grouped in various ways
- Door and Container are grouped in a Tray, which is a composite object; sev-
eral trays and a Thermostate are grouped in a Fridge. The latter, and another
composite Money Unit, are in turn grouped into the top object, DVM. We see

146 M. Risoldi and V. Amaral

that the operators might have access to the system at various levels, either at a
higher level or only to a part of it, according to their needs or their profile.

In such a system, commands should be able to be passed down in the hierarchy,
so that for example Operator A is able to send commands not only to DVM,
but also to Trayl. States and alarms, instead, should flow up, meaning that an
object that fails should notify its state to its ancestor objects, which might in
turn decide to update their states depending on this information. This is essential

for diagnosing faults even at the highest levels.

v

System &
GUI
Description

GUI System
FSM Structure

System
Dynamic
Behaviour

Use
cases
User
Profiles

Adaptivity
Rules

System
Static
Behaviour

System Model
GUI Logical Model

Widget —& GUI Visual Model
Library

Generation
System
simulator

Prototype
Generator

v

Testin,

HW system |« - GUI Prototype
— Proto Df)

Fig. 2. The general schema of the methodology

2.2 The Methodology

Figure [shows how we defined the methodology for GUI building. There is
an initial phase where the requirements and specifications for the system and
GUI are gathered (top semicircle). From this information, a model is built semi-
automatically (central square). Finally, a prototype is generated from the model
(bottom semicircle). In the following sections we will analyze these three phases,
explain some technological choices that have been made for their application,

and discuss the advantages that we find.

Towards a Formal, Model-Based Framework for Control Systems 147
3 Gathering Requirements

We start with the requirements of the System and the GUI, which should be pro-
vided by the system engineers/technicians/users, what we call System Experts
in general. These should include:

— A description of the system structure, in its hierarchical aspects (as i
Figure [I) as well as in its geometrical properties (shape, location, dimen-
sions of every component of the system that we shall represent in the GUT);

— The system behaviour, as in what commands objects can accept, and what
values they may communicate; this is a concept akin to what we call interface
for a Class in OO programming;

— The dynamic behaviours for all the objects of the system, and also how
they compose (i.e. how an object can react, by changing its state, to a child
object’s state change);

— The FSM for the GUI, describing its initial and possible states (e.g. different
levels of visualization, different operation modes) and how they might change
in reaction to events;

— Use cases and user profiles, which are needed to establish adaptivity rules.

Adaptivity rules describe how the interface should react to a number of
factors[19], including user knowledge, both static (profile) and dynamic (train-
ing), events in the system (faults, alarms) or particular actions. Adaptation is a
complex and vast topic which would require an article on its own, and we will
not treat it here.

3.1 Formalizing Requirements

A problem that most developers meet at some point is that there is usually
an impedence problem between the way of thinking of software developers and
system experts. Software developers have their mind focused on getting require-
ments for building an interface, often ignoring or simply not understanding some
of the requests coming from the system experts. System experts, on the other
hand, might have a faint idea of what rigour is needed to express requirements
for developers, but have a very deep knowledge of the information to provide,
and it is only they who can say if a software meets the requirements or not.
This risks causing production of poor software which only partially meets the
requests and is a challenge to modify and maintain.

Previous research in the field [7] has shown with experimental data that efforts
to provide a more understandable specification can greatly help in reducing
error rates and increasing comprehension. Other works [I8] have shown that one
important factor to reduce ambiguity and complexity of specifications is to define
a precise domain to work with, although the conclusions point out that this is
not enough and that no unique technique can ensure an all-purpose solution even
for a specific domain. As we found in more research [TOT4)3], there are however
some clear advances whenever the field has some standardized ways of specifying

148 M. Risoldi and V. Amaral

it. If one can rely on having certain information under a certain form, there are
stronger assumptions that can be done on the efficiency of a proposed solution.

We are trying to express the system features by defining a domain specific
framework which is at the same time simple enough for system experts to use
and formal enough for developers to work on. Also, we want this to be usable
in practice, not only in theory. To achieve this, first of all we concentrated on a
very specific domain, as we discussed when giving a definition of control systems.
Then, we adopted a base for the framework which is in fact a composition of
several approaches:

— we use a domain specific language (DSL), suitable to express hierarchical
and functional characteristics of objects.

— for storing this data we use a database (according to a very well-established
schema for control systems[I]) containing the system composition, geometry
and dataflow. Often this kind of database generally will already exist, be-
cause it’s used in the system engineering phase, for construction and testing.
In other cases still it should not be difficult to build, because of its modular-
ity and the fact that the information it asks for has normally been defined
anyway.

— we are deriving a dynamic state-machine language from State Manager Lan-
guage (SML) [9]; this solution also presents an advantage in which SML is a
widely used language as it is integrated in one of the major monitoring and
supervision softwares, PVSS II [g].

An example of specification is the following. Let’s consider a part of the hi-
erarchy of the DVM of Figure[Il a fridge containing a tray and a thermostate,
with the tray containing a door and a container for drinks. In Listing [[1] the
Container class is defined.

Listing 1.1. Definition of a Container

class: Container;

type: A;

geomshape: Box;

dimensions: 100%x100%900;

coordinates: 10%2%10;

property drinkNumber: integer ;

method refill (pl: integer);
drinkNumber=drinkNumber+p1 ;

end method;

method buy ();
if (state!=Empty) then

drinkNumber=drinkNumber —1;

else exception;

end method;

state: Empty / INITIAL STATE;

Towards a Formal, Model-Based Framework for Control Systems 149

when refill (pl) do refilled;
action: refilled ;
if (post(drinkNumber)>5)then terminate action /state=0K;
else if (post(drinkNumber) <= 5 && post (drinkNumber)>0)
then terminate action/state=LowNumber;
end action;
end state;
state: LowNumber ;
when buy () do bought;
when refill(pl) do refilled;
action: bought;
if (post(drinkNumber)=0)
then terminate action / state=Empty;
else terminate action / state=LowNumber;
end action;
action: refilled;

end action;
end state;

. \\ more states definitions ...
end class;

We can see the description of the base features of the object class - its name,
type, and the geometrical features. The type is useful if we want to define features
at a sub-class level: there might be different types of containers, and in each type
we might have specific features, but still have a container. This can help in large
scale systems, where the number of types is generally much more limited than
the number of objects.

The functional features (properties and methods) are then listed. For each
property we have its type; for each method we define the types of the parameters
and an implementation. Note that in this phase the specification should abstract
objects to focus on the control aspects; we don’t implement all the details of the
buy method, but simply the fact that it takes one drink from the container.

Finally, there is the definition of the state machine. States are listed one after
the other, and the initial state (here Empty) is indicated. For each state, where
relevant, the possible events are listed, and the actions triggered by the event
are written. Here, in the state Empty, whenever there is a refill event, the new
value of drinkNumber is checked; if it is more than fine, the object goes to state
OK; if it is more than 0 but less or equal to 5, it goes to state LowNumber. Note
the post statement, which expresses the value of a property after the event; this
allows us to distinguish between pre- and post-conditions of events.

An interesting case to see is the definition of the state machine for a compos-
ite object, a Tray. In Listing[[.2] we can see how a state change can be triggered by

150 M. Risoldi and V. Amaral

the state change of a child object. The event here is the state change of a child
object, containerl. Complex events can be envisaged when there are several
children objects, for example establishing a majority rule where the state turns
to Faulty only if the majority of children are Faulty.

Listing 1.2. State change trigger Listing 1.3. Instantiating a class
class: Tray; object: containerl;
class: Container;
state: OK; type: A;

when containerl parent: trayl;
in state Empty end object;
do GOFAULTY;

action: GOFAULTY
terminate action
/ state=Faulty;
end action;
end state;

end class;

We then have to declare the instances of the classes, as in Listing [[L3l We are
saying here that there is an object container1 which belongs to the previously
declared class Container, and that it is a child of Tray. We can declare as many
objects of this class as we want, and build complex hierarchies in a very simple
recurring way (we will declare a Tray object to have a Fridge parent, we will
declare a Fridge object to have a DVM parent...).

Since we can’t foresee system experts writing directly into a DSL or a database,
unless we fall again in the difficulty problems approached by [7], we have to
develop tools based on wizards which help them provide the requirements, and
which represent the organization of the system in a comprehensible way. Not only
this, but also allow a partial specification of a system when the requirements are
not complete (a common guideline in rapid software development).

4 Modeling

We want a model that expresses hierarchy. We need to model elementary and
composite objects, with dynamic states that as we saw can be composite as
well. We want to be able to interact with objects at various levels of the hierar-
chy (as in Figure[ll). Another very relevant feature is concurrency: in any given
real-world system, more events can occur at the same time, and they could trig-
ger state changes or communications which are concurrent. In order to avoid the

Towards a Formal, Model-Based Framework for Control Systems 151

nightmare of having to model every single execution case, we needed a modeling
language that already takes into account concurrency via its semantics.

The choice was the Concurrent Object-Oriented Petri Nets (CO-OPN) lan-
guage [6l5], a formalism based on Petri Nets with abstract algebraic data types.
A strong motivation for the choice is that CO-OPN allows for mathematical ver-
ification of formal model properties (thanks to its strictly formal semantics) and
for automated test generation and selection. Related work has been published
on the subject ([I3UII]).

It is supported by a tool, CoopnBuilder, which allows Java code generation
from the model. This can be used to generate and run tests on the model even
before passing to the implementation phase [2[12]. Finally, it has a coordination
model, based on Contexts[6], which goes further than typical Petri Nets strategies
for hierarchy based on substitution of nets with transitions (see the remarks on
limits of subnet substitutions with transitions in [I6] and several papers by P.
Palanque and R. Bastide, which can be found in [I5]) and can efficiently scale
for large systems thanks to its modularity.

4.1 Transforming Requirements to a Model Using Meta-modeling

By specifying the system as in the previous section, we have enough information
to produce two outcomes. The first is to construct a model of the system itself.
This will be important with respect to testing the developed interfaces prior to
implementing them. The second thing is to deduce elements of the GUI from
the features of the system. There are two sources of information for this task: the
nature of the data exchange with the object (what methods and parameters it
has, if they are in input or output) and the type of paradigm of interaction (like
2D windows and buttons, 3D, textual...). These factors are processed according
to tables of rules (similar to [I8]) which establish a ”best guess” of what should
be used to represent the object, eventually offering alternatives. The developer
can still adapt this choice according to specific requirements. For example, the
Container object has a refill method with an integer parameter. Rules could
say that in this case a suitable 2D representation is a textfield (for the integer
parameter) and a button (to send the command). The developer could choose to
use a combobox instead of a textfield. This will be done using a transformation
engine (called Model Transformer) with a graphical interface resuming relevant
features for every object (and letting the developer make modifications to single
objects or to whole classes).

To produce these outcomes, the completed specification, expressed in our
DSL, is transformed automatically by the Model Transformer to a formal model
of both the system and the GUI using the CO-OPN language. This is possi-
ble thanks to having both the meta-models of CO-OPN and of our DSL, and
to meta-model based transformations which are defined between the two. The
transformation technique from other languages to CO-OPN is a vast subject,
for which related work has been published [I7]. The structure of the resulting
model is the subject of the following subsections.

152 M. Risoldi and V. Amaral

4.2 A Structured Model

The model we use is structured in a way that separates functionality and visual-
ization, in a way very much inspired to the Model-View-Controller pattern. With
the information we gathered in the initial phase (and that we refined through
the model transformer) we can produce three different models. The first, called
System Model, represents the physical system. It models all its objects in their
hierarchy and inter-communication aspects, by using CO-OPN contexts and syn-
chronization between objects. It can be built using the information about the
hierarchy of the system (for structuring the model), the data flow of every object
(for defining every object’s methods/gates), and the dynamic behaviour of the
system (for defining the internal state machine of every object as well as the
synchronization axioms between objects). The second model, called GUI Logical
Model, is a model of the GUI in its behavioural aspects. We don’t have its actual
visual representation here, but only its abstraction in terms of interaction - what
objects make it up, what are their structural parameters, what they accept and
return, and how they interface with the objects of the system in terms of com-
mands and values. The third and last, called GUI Visual Model, models the vi-
sual aspects of the GUI and the associated semantics. Models communicate with
each other just like the interface communicates with the system (see Figure [3).

Model world Implementation world
|
! -
: I
-1
. 1
1
System Model i
| HHH
|
~~ o . \: ‘ .lJ l '
re
S R |
N ~<_ 5
GUI Logical Tl e —
Model [T Real System
! S~ ~
—~ : oL
i Dialog Box
v i
Temp 4 T
GUI Visual
Model i state | OK F
-
S
b o™
1 =~
i GUI

Fig. 3. The structure of the model

4.3 The System Model

As an example of the system model we can build one for our example specifi-
cation of the DVM. A part of the System model is shown in Figure using
CO-OPN graphical notation. As a quick reference, large white squares are con-
text, grey squares are objects; small black rectangles are methods, and small

Towards a Formal, Model-Based Framework for Control Systems 153

FridgeContext
TrayContext

FridgeContext

ThermostateContext TrayContext

Cmd _ eturn _ Cmd _ Return _

Cool

Sto Fridge

statelnfo _

A\
[— T | —

Cmd Return _ Cmd _ Return _
(a) (b)

Fig. 4. Part of the System model and hierarchical communication

white rectangles are gates (events). Arrows represent axioms of synchroniza-
tion between gates and methods. The underscore near some methods and gates
represents its parameter, which is an algebraic data type (ADT) token.

The hierarchy is obtained by having CO-OPN contexts for each object; the
context of a child object is contained in the context of the parent object (see
TrayContext which is contained in FridgeContext). The functional aspects of
objects are expressed with a CO-OPN object associated with each context (see
the Fridge object, associated with FridgeContext), that presents methods and
events of the object, and that keeps state information. The object also models
the implementation of methods via its internal Petri Net.

To model vertical communication in the hierarchy, every context has a Cmd
method and a Return gate. These two have axioms that allow the routing of
commands and messages in the hierarchy to the right objects. The Cmd method
takes as parameters the name of the target object, the name of the method to call
and its parameters. The Return gate gives back the name of the object sending
the message, the name of the message and its parameters. Let’s see this with
an example. In Figure we are highlighting the sequence of synchronizations
using thicker arrows, numbered 1-4 in sequence (the numbers in circles are only
for illustration purposes, and not part of the CO-OPN formalism). We are calling
the unlock method of the Tray object. To do so we call Cmd Tray unlock []
on the outmost context (in this case FridgeContext). The Cmd method has
3 possible synchronizations: calling the Cool or Stop methods of Fridge, or
passing the call to the child context. Axiom [l in the FridgeContext will say

154 M. Risoldi and V. Amaral

that if the object name in the Cmd call is not Fridge, the right synchronization
is with the child context’s Cmd (arrow 1):

(o = Fridge) = false =>
Cmd In FridgeContext obj met With Cmd In TrayContext obj met; (1)

Similarly, the axioms in TrayContext will make so that the call is passed to the
unlock method of the Tray object (arrow 2).

A very similar strategy is used for sending up messages using the Return gate.
In arrow 3 a state change of Tray is sent out through the Return gate, in a form
like Return Tray state OK. When passing into FridgeContext (arrows 4), not
only the message is passed on to the upper Return gate, but the state change of
the child is notified to the Fridge object, which will eventually decide whether
to change state (according to its state machine).

In other words, the outmost context will act as an interface to the model,
taking inputs and giving outputs. This, in addition to giving an elegant abstrac-
tion, allows us to have a single entry/exit point, which in the implementation
phase is an advantage (we can substitute the outmost context of the model with
a communication driver). Since this pattern is repetitive and all the informa-
tion needed to build it is already in the specification, it can be easily generated
by the model transformer, and regenerated with the model as the specification
changes.

Thanks to CO-OPN transactional semantics, we can also automatically man-
age the case of a wrong method call (non existing method or object or wrong
parameters) without adding mechanisms to manage it. When a command is
passed down, it will not succeed until all the synchronisations called by it suc-
ceed. For a wrong call all the possible synchronisation sequences will fail at some
point, and the fail will be propagated to the caller.

4.4 The GUI Logical Model

This model is built mainly from the analysis of the objects in the system, in terms
of what interaction they require. This is part of the information in the Model
Transformer tool, notably the part that says what kind of data is input/output.
According to the choices made in the transformer tool, and by using a library
of corresponding model patterns, we can build a model which represents the
flow of info between the GUI and the system. A similar approach had been used
by [I8]: for example, if we know that an object has a command which accepts
no parameters and returns an integer, we can abstract its GUI behaviour with
a model providing a method with no parameters and a gate with an integer
parameter. Continuing our example of the DVM, Figure [0 shows the logical
model for the control of the Tray object from Figure and its communication
with the System model.

The GUI object is represented by a CO-OPN object and context, and for
each method we want to control from the GUI there is a method on the model
(e.g. the unlock method here). Calls on these methods are sent (together with

Towards a Formal, Model-Based Framework for Control Systems 155

unlock state _
| — LogTrayCitx

unlock state _

LogTray

Return _ Return _

oot -

Cmd Return _

FridgeContext

]
Cmd _ : ! Return _
\ : Cmd_ | Cmd_
to System's from System's L]
Cmd _ Return _ unlock state _
(a) Logical model for the Tray (b) Communication with system model

Fig. 5. The GUI Logical Model

the object’s name) to the System model’s Cmd method. Messages coming from
the System’s Return gate are received and eventually sent to the GUI through
gates (e.g. the state gate here).

This model does not worry about calculating states; in principle, the GUI
should only reflect the state of the system. No state is changed unless the system
communicates so.

4.5 The GUI Visual Model

Finally, we shall model the actual visual aspect of the GUI. This model, called
GUI Visual Model is modular; we build it using components taken from a li-
brary of "model widgets”, in fact pieces of CO-OPN models representing basic
controls; these widgets can be assembled and composed to build more complex
objects with elaborate behaviour. These objects will be mapped to objects in
the GUI logical model. The decision about what widget to use comes from the
choices made in the Model Transformer, where the developer decided that for a
particular object, say, a text field and a red/green led were needed.

To finish our example, let’s see the visual model for the Tray object. The model
transformer will have shown us that there is an unparametrized input (unlock
has no parameters) and that there is an enumerator output (the state, which
can be {0K, Faulty}). Let’s suppose that we chose a 2D windows and buttons
paradigm, and that for the unlock command we accepted the default suggestion,
a button (perfect to send a command without having parameters). For the state
feedback, the default suggestion was a combo box, but we rather decided for a
coloured led, mapping different colours to different values of the enumerator
(green=0K, red=locked). Based on these choices, the model in Figure [il can be
built using widgets for SimpleButton and ColourLed.

156

M. Risoldi and V. Amaral

unlock

VisualTray

ColourLed

SetColour _

Push

SimpleButton

PushEvent

v state _ ! unlock
| v

from Logic's to Logic's
state _ unlock

Return

—'Return _

LogTrayCtx

Cmd _ Cmd _
unlock state _
unlock state _

VisualTray

FridgeContext

(a) Visual model for the Tray (b) Communication between the three lay-

ers

Fig. 6. The GUI Visual Model

Using multiple paradigms. One aspect deriving from the use of widgets
libraries and by the separation between logical and visual model is that we
might as well have multiple paradigms used for the interface. Already at the
Model Transformer level we should be able to choose what kind of interaction
paradigm we want (a 2D windows and buttons GUI, a graph, a text console, a
3D stereo immersive GUI), and this would have a consequence on the kind of
suggestions we get (and choices we can make) in the model transformer. Also,
it is easy to realize that while the visual aspect of the components will change
(along with the GUI Visual Model), the data flow remains the same (along with
the GUI Logical Model) . In fact, a redefinition of the paradigm should only
affect the GUI Visual Model, allowing us to have a stable behaviour model for
the GUI.

5 Generating a GUI Prototype

The third phase of the methodology is the prototype generation. The informa-
tion to be used for building an actual prototype is first of all the GUI Logical
and Visual models. This gives us the input/outputs and coordination of the GUI
objects (logical) and what objects have to be used (visual). Then, since we want
to have an actual implementation of the GUI, we have to establish a correspon-
dence between the widgets of the visual model and actual code widgets, e.g.
translate a pushbutton model into real code for a pushbutton.

However, there are some aspects to a GUI which are not pertinent to the
objects contained in it, but rather to the specific implementation of the GUI
itself. The requirements might have included details about the language to use
for the GUI, the interaction/navigation method, the screen estate used, and so
on. It is easy to realize that some of these requirements can only be formalized

Towards a Formal, Model-Based Framework for Control Systems 157

if strong restrictions are made to what can be specified. On the one hand we can
do this, by foreseeing only a limited amount of possible paradigms, languages,
interaction modes and so on; on the other hand, this implies a loss of flexibility
that might be too much for certain cases.

5.1 Communication

In addition to generating an executable GUI, the prototype generator must take
into account the need for this prototype to communicate with the system. As
Figure P shows, the prototype can be tested against the ”code-generated” simu-
lator (simulation branch in the Figure) or against the real control system (testing
branch), or any other simulator which uses the same communication model. This
requires appropriate drivers to ensure communication. Since the same model was
used to generate the prototype and the simulator, and since the generated sim-
ulator is structured with a standardized Javabeans architecture, it is possible to
generate automatically a driver to connect the two. For the communication with
the real system, there are however aspects which are specific to the particular
case. The most common cases are accepting commands via a bus, or via SOAP
messages. The prototype must then provide a communication driver at least for
these two cases, that has to be parametrized to match the real system.

6 Case Studies

One large case study which we are following in collaboration with CERN] is the
control system for the Silicon Strip Tracker of the CMS experimentﬁ, a detector
of particles for a high energy physics experiment in the Large Hadron Collider
at CERN. This system, composed of several thousands objects and with a very
complex hierarchy, has very strict requirements in terms of reliability of the GUI,
and makes a good case study. Over a period of one year, we have been analyzing
the system to make sure we fully understand all the aspects of complexity of such
a system (avoiding the risk of oversimplifying our approach). After this initial
study phase, we defined the DVM case study. What we have seen in Figure [I]
is a part of this actual specification; the complete one has hot and cold drinks,
completely defined FSMs and can be controlled and diagnosed through an ad-
vanced interface. The DVM has the same complexity issues of the CMS Tracker
but on a minor scale: hierarchical structure; several objects of the same classes;
interdependent state changes for the objects; possibility of having different user
profiles/levels of access. This allows for a lightweight work even in the initial
phase where all the tools are not yet implemented, without oversimplifying the
problem. The system description as well as the system model have been defined.
We are currently in the process of formalizing the transformation from the spec-
ification to the system model, identifying the necessary steps that have to be
fixed and automated.

! http://www.cern.ch
2 http://cmsdoc. cern. ch

http://www.cern.ch
http://cmsdoc.cern.ch

158 M. Risoldi and V. Amaral

In a second phase, we will apply the results of our studies to the CMS ex-
periment and get results for a larger scale case study. We are confident in the
scalability of the model, due to the fact that the complexity is efficiently ap-
proached by CO-OPN’s coordination model. In fact from our preliminary models
what turns out is that, as long as the communication is vertical in the hierarchy
(a reasonable constraint to pose for control systems), no further complexity is
added when the object hierarchy gets higher than 2 (also because the model does
not need to be done by hand). The major difficulty for scalability could come
from the human interaction needed in the earlier phases of the methodology. To
help solve this we can make use of a feature of control systems: whenever there
is a very large number of components in a system, it is also true that it will
generally be possible to group them in large sets which have some (or even all)
features equal (for example: all 10 drink containers in a DVM; all 37000 silicon
detectors in the CMS tracker). Thanks to this we can provide the tools with the
ability of easily defining sets of objects, and specifying properties at the level of
classes of objects. This could be more easily done thanks to the type identifier
we presented in section 3.1

7 Conclusions and Future Work

We presented a methodology which allows for semi-automatic GUI generation for
complex control systems. The methodology is centered on a domain specific lan-
guage and meta-model based transformations into a formally-defined language,
and allows for automated software verification and testing. This, and the domain
specific assumptions, can be used to build a framework to greatly facilitate the
task of specifying a system.

For the immediate future, after the definition of the language and framework
has been completed, we will concentrate on the automatization aspects and the
building of tools. After the case study of the drink vending machine has been
done, we will apply the methodology to the larger case study, to verify scalability
and refine furtherly the process.

An aspect which still has to be thoroughly studied is what is needed at the
GUI Logical level to express the behaviour of the GUI itself, i.e. the internal
coordination between objects. We are identifying what are the requirements to
gather in this respect; once this has been done, we will investigate how to express
them and what techniques to use to model them.

Acknowledgements

The project, started in October 2005, is a collaboration between the Univer-
sity of Geneva (CH), Universities of Applied Sciences: Engineering School of
Geneva and Haute Ecole Valaisanne (CH), Universidade Nova de Lisboa (P),
and CERN (CH). The project is funded by the Hasler Foundation (http://
www.haslerstiftung.ch).

http://www.haslerstiftung.ch
http://www.haslerstiftung.ch

Towards a Formal, Model-Based Framework for Control Systems 159

References

1.

2.

3.

© ®

10.
11.

12.

13.

14.

15.
16.

17.

18.

19.

A. Aerts, F. Glege, and M. Liendl. A Database perspective on CMS Detector Data.
In Proceedings of CHEPO/ conference, 2004.

S. Barbey, D. Buchs, and C. Péraire. A theory of specification-based testing for
object-oriented software. In EDCC, pages 303-320, 1996.

P. J. Barclay, T. Griffiths, J. McKirdy, J. Kennedy, R. Cooper, N. W. Paton, and
P. Gray. Teallach — a flexible user-interface development environment for object
database applications. Journal of Visual Languages & Computing, 14(1):47-77,
February 2003.

B. Barroca and V. Amaral. Rapid prototyping of user interfaces for control systems:
A survey. Technical report, SMV Group, University of Geneva, 2006.

O. Biberstein, D. Buchs, and N. Guelfi. Object-Oriented Nets with Algebraic Speci-
fications: The CO-OPN/2 Formalism. In Concurrent Object-Oriented Programming
and Petri Nets, pages 73-130, 2001.

D. Buchs and N. Guelfi. A formal specification framework for object-oriented
distributed systems. IEEE Trans. Software Eng., 26(7):635-652, 2000.

D. Carr. Interaction object graphs: an executable graphical notation for specifying
user interfaces. In P. Palanque and F. Paterno, editors, Formal methods in Human-
Computer Interaction, pages 141-155. Springer-Verlag, 1997.

ETM. ETM professional control - PVSS II. URL: http://www.pvss.com.

B. Franek and C. Gaspar. SMI++ - State Management Interface. URL:
http://cern.ch/smi.

KGB. Team bibliography. URL: http://kgb.ijs.si/KGB/accomplishments.php.

L. Lucio. Syntax and semantics of satel (semi automatic testing language). Tech-
nical report, SMV Group, University of Geneva, 2006.

L. Lucio, L. Pedro, and D. Buchs. A Test Language for CO-OPN Specifications.
In RSP ’05: Proceedings of the 16th IEEE International Workshop on Rapid Sys-
tem Prototyping (RSP’05), pages 195-201, Washington, DC, USA, 2005. IEEE
Computer Society.

L. Lucio, L. Pedro, and D. Buchs. A test selection language for co-opn speci-
fications. In IEEFE International Workshop on Rapid System Prototyping, pages
195-201, 2005.

F. Moussa, C. Kolski, and M. Riahi. A model based approach to semi-automated
user interface generation for process control interactive applications. Interacting
with Computers, 12(3):245-279, January 2000.

P. Palanque. Publications. URL: http://liihs.irit.fr /palanque/publications.html.
P. Palanque and R. Bastide. Petri net based design of user-driven interfaces using
the interactive cooperative objects formalism. In Proceedings of EUROGRAPHICS
workshop on ”design, specification and verification of Interactive systems”, 1994.
L. Pedro, L. Lucio, and D. Buchs. Principles for system prototype and verification
using metamodel based transformations (accepted for publication). In Proceedings
of RSP 2006 conference, 2006.

J. Vanderdonckt. Knowledge-Based Systems for Automated User Interface Gen-
eration: the TRIDENT Expierence. In Proceedings of the CHI 95 workshop on
Knowledge Based Support for the User Interface Design Process, 1995.

G. Viano, A. Parodi, J. Alty, C. Khalil, I. Angulo, D. Biglino, M. Crampes,
C. Vaudry, V. Daurensan, and P. Lachaud. Adaptive user interface for process
control based on multi-agent approach. In AVI ’00: Proceedings of the working
conference on Advanced visual interfaces, pages 201-204, New York, NY, USA,
2000. ACM Press.

SketchiXML: A Design Tool for
Informal User Interface Rapid Prototyping

Adrien Coyette, Jean Vanderdonckt, and Quentin Limbourg

Belgian Lab. of Computer-Human Interaction (BCHI), Information Systems Unit (ISYS)
Louvain School of Management (LSM), Université catholique de Louvain (UCL),
Place des Doyens 1, B—1348 Louvain-la-Neuve (Belgium)

{coyette, vanderdonckt, limbourg}@isys.ucl.ac.be
http://www.isys.ucl.ac.be/bchi

Abstract. Sketching consists of a widely practiced activity during early design
phases of product in general and for user interface development in particular in
order to convey informal specifications of the interface before actually imple-
menting it. It is quite interesting to observe that designers as well as end users
have abilities to sketch parts or whole of the final user interface they want, while
discussing the advantages and shortcomings. SketchiXML consists of a multi-
platform multi-agent interactive application that enables designers, developers, or
even end users to sketch user interfaces with different levels of details and support
for different contexts of use. The results of the sketching are then analyzed to pro-
duce interface specifications independently of any context, including user and
platform. These specifications are exploited to progressively produce one or sev-
eral interfaces, for one or many users, platforms, and environments.

1 Introduction

Designing the right User Interface (UI) the first time is very unlikely to occur. In-
stead, UI design is recognized as a process that is intrinsically open (new considera-
tions may appear at any time), iterative (several cycles are needed to reach an accept-
able result), and incomplete (not all required considerations are available at design
time). Consequently, means to support early Ul design has been extensively re-
searched [12] to identify appropriate techniques such as paper sketching, prototypes,
mock-ups, diagrams, etc. Most designers consider hand sketches on paper as one of
the most effective ways to represent the first drafts of a future UI [4,7,12, 15,16,17].
Indeed, this kind of unconstrained approach presents many advantages: sketches can
be drawn during any design stage, it is fast to learn and quick to produce, it lets the
sketcher focus on basic structural issues instead of unimportant details (e.g., exact
alignment, typography, and colors), it is very appropriate to convey ongoing, unfin-
ished designs, and it encourages creativity, sketches can be performed collaboratively
between designers and end-users. Furthermore, the end user may herself produce
some sketches to initiate the development process and when the sketch is close
enough to the expected UI, an agreement can be signed between the designer and the
end user, thus facilitating the contract and validation. Van Duyne et al. [20] reported

N. Guelfi and D. Buchs (Eds.): RISE 2006, LNCS 4401, pp. 160 2007.
© Springer-Verlag Berlin Heidelberg 2007

SketchiXML: A Design Tool for Informal User Interface Rapid Prototyping 161

that creating a low-fidelity UI prototype (such as UI sketches) is at least 10 to 20
times easier and faster than its equivalent with a high-fidelity prototype (such as pro-
duced in UI builders). The idea of developing a computer-based tool for sketching
Uls naturally emerged from these observations [12,17]. Such tools would extend the
advantages provided by sketching techniques by: easily creating, deleting, updating or
moving Ul elements, thus encouraging typical activities in the design process [3] such
as model-checking and revision. Some research was carried out in order to propose a
hybrid approach, combining the best of the hand-sketching and computer assisted in-
terface design, but this marriage highlights five shortcomings:

1. Some tools only support sketching activities, without producing any output: when
the designer and the end user agreed upon a sketch, a contract can be signed be-
tween them and the development phase can start from the early design phase, but
when the sketch is not transformed, the effort is lost.

2. Sketching tools that recognize the drawing do produce some output, but not in a
reusable format: the design output is not necessarily in a format that is directly re-
usable as development input, thus preventing reusability.

3. Sketching tools are bound to a particular programming language, a particular Ul
type, a particular computing platform or operating system: when an output is pro-
duced, it is usually bound to one particular environment, therefore preventing de-
velopers from re-using sketches in new contexts, such as for various platforms.

4. Sketching tools do not take into account the sketcher’s preferences: as they impose
the same sketching scheme, the same gestures for all types of sketchers, a learning
curve may prevent these users from learning the tool and efficiently using it.

5. Sketching tools do not allow a lot of flexibility in the sketch recognition: the user
cannot choose when recognition will occur, degrading openness and when this oc-
curs, it is difficult to return to a previous state.

In the remainder of this paper, Section 2 demonstrates that state-of-the-art UI
sketching tools all suffer from some of the above shortcomings. Section 3 provides an
overview of the Concrete User Interface (CUI) used in the sketching process, which
results from widget abstraction. In Section 4, these widgets are recognized on de-
mand. The multi-agent architecture of SketchiXML is outlined to support various
scenarios in different contexts of use with examples. Section 5 concludes the paper.

2 Related Work

UI prototypes usually fall into three categories depending on their degree of fideity,
which is the precision to which they reproduce the reality of the desired UL

The high-fidelity (Hi-Fi) prototyping tools support building a UI that looks com-
plete, and might be usable. Moreover, this kind of software is equipped with a wide
range of editing functions for all UI widgets: erase, undo, move, specify physical
attributes, etc... This software lets designers build a complete GUI, from which is
produced an accurate image (e.g., Adobe Photoshop, PowerPoint) or code in a deter-
mined programming language (e.g., Visual Basic, DreamWeaver). Even if the final
result is not executable, it can still be considered as a high fidelity tool given that the
result provided looks complete.

162 A. Coyette, J. Vanderdonckt, and Q. Limbourg

The medium-fidelity (Me-Fi) approach builds UI mock-ups giving importance to
content, but keeping secondary all information regarding typography, color scheme or
others minor details. A typical example is Microsoft Visio, where only the type, the
size and the contents of UI widgets can be specified graphically.

Low-fidelity (Lo-Fi) drafting tools are used to capture the general information
needed to obtain a global comprehension of what is desired, keeping all the unneces-
sary details out of the process. The most standard approaches for Lo-Fi prototyping
are the “paper and pencil technique”, the “whiteboard/blackboard and post-it ap-
proach” [16]. Such approaches provide access to all the components, and prevent the
designer from being distracted from the primary task of design. Research shows that
designers who work out conceptual ideas on paper tend to iterate more and explore
the design space more broadly, whereas designers using computer-based tools tend to
take only one idea and work it out in detail [20]. Many designers have reported that
the quality of the discussion when people are presented with a Hi-Fi prototype was
different than when they are presented with a Lo-Fi mock up. When using Lo-Fi pro-
totyping, the users tend to focus on the interaction or on the overall site structure
rather than on the color scheme or others details irrelevant at this level.

Consequently, Lo-Fi prototyping offers a clear set of advantages compared to the
Hi-Fi perspective, but at the same time suffers from a lack of assistance. For instance,
if several screens have a lot in common, it could be profitable to use copy and paste
instead of rewriting the whole screen each time. A combination of these approaches
appears to make sense, as long as the Lo-Fi advantages are maintained. This consid-
eration results two families of software tools which support UI sketching and repre-
senting the scenarios between them, one with and one without code generation.

DENIM [15] helps web site designers during early design by sketching information
at different refinement levels, such as site map, story board and individual page, and
unifies the levels through zooming views. DENIM uses pen input as a natural way to
sketch on screen, but do not produce any final code or other output.

In contrast, SILK [12], JavaSketchlt [4] and Freeform [16,17] are major applications
for pen-input based interface design supporting code generation. SILK uses pen input
to draw GUIs and produce code for OpenLook operating system. JavaSketchlt pro-
ceeds in a slightly different way than Freeform, as it displays the shapes recognized in
real time, and generates Java UI code. JavaSketchlt uses the CALI library [4] for the
shape recognition, and widgets are formed on basis of a combination of vectorial
shapes. The recognition rate of the CALI library is very high and thus makes JavaS-
ketchlt easy to use, even for a novice user. Freeform only displays the shapes recog-
nized once the design of the whole interface is completed, and produces Visual Basic
6 code. The technique used to identify the widgets is the same than JavaSketchlt, but
with a slightly lower recognition rate. Freeform also supports scenario management
thanks to a basic storyboard view similar to that provided in DENIM.

To enable sketching of widgets which are traditionally found in window managers,
there is a need to have an internal representation of the UI being built, in terms of
those widgets. Therefore, the next section introduces a means for specifying such a Ul
in terms of concrete interaction objects, instead of widgets.

SketchiXML: A Design Tool for Informal User Interface Rapid Prototyping 163

3 The Concrete User Interface in UsiXML

The need for abstracting widgets existing in various toolkits, window managers, or In-
tegrated Development Environments (IDEs) has appeared since the early nineties. At
that time, the main goal for introducing an abstraction for widgets was the desire to
specify them independently of any underlying technology, mainly the different oper-
ating systems and the different window managers working with the same operating
system. For this purpose, the notion of Abstract Interaction Object (AIO) has been in-
troduced to provide an abstraction of the same widget across those different toolkits,
window managers, and operating systems so as to manipulate one single specification
of this widget [18]. Another goal was the desire to entirely specify the presentation
and the behavior of the widget [6,8].

Since that time, much progress has been accomplished towards improving the
expressiveness of these abstractions, to the ultimate point of having extensive specifi-
cations of an entire Ul in a User Interface Description Language (UIDL). The most
representative examples are XML-compliant UIDLs such as UIML [1], UsiXML
[13,14], and XIML [9]. A noticeable example is also the effort of specifying domain-
oriented widgets such as those covered by the ARINC 661 Specifications in the
domain of widgets for automated cockpits [2,3]. In order to be rigorous for the ab-
straction with respect to which the specification needs to be expressed, a reference
framework is first introduced.

3.1 A Reference Framework for User Interfaces in Multiple Contexts

The foundation of the approach adopted here is to rely constantly on the same User Inter-
face Description Language (UIDL) throughout the development life cycle. This UIDL is
UsiXML (User Interface eXtensible Markup Language — http://www.usixml. org) which
is characterized by the following principles [13,14]:

e FExpressiveness of UI: any Ul is expressed depending on the context of use thanks
to a suite of models that are analyzable, editable, and manipulable by a software
agent.

e Central storage of models: each model is stored in a model repository where all Ul
models are expressed similarly.

e Transformational approach: each model stored in the model repository may be
subject to one or many transformations supporting various development steps.
Each transformation is itself specified thanks to UsiXML [14].

Contrarily to other UIDLs such as UIML and XIML, UsiXML [12] enables specify-
ing various levels of information and details until a final UI is obtained and depending
on the project. It is not necessary to specify all models at all levels involved in the Ul
development life cycle. For this purpose, UsiXML is structured according to four basic
levels of abstractions defined by the Cameleon reference framework [5] (Figure 1) es-
tablished during the European project Cameleon.

At the top level is the Task & Concepts level that describes the various interactive tasks
to be carried out by the end user and the domain objects that are manipulated by these
tasks. These objects are considered as instances of classes representing the concepts.

164 A. Coyette, J. Vanderdonckt, and Q. Limbourg

‘ Abstract User Interface |

‘ Task & Concepts

‘ Concrete User Interface |

l

‘ Final User Interface |

Context of use

Fig. 1. The four levels of the Cameleon reference framework (source: [5])

An Abstract UI (AUI) provides a Ul definition that is independent of any modality
of interaction (e.g., graphical interaction, vocal interaction, 3D interaction etc.). An
AUI is populated by Abstract Containers (ACs), Abstract Individual Components
(AICs) and abstract relationships between. AICs represent basic system interactive
functions, which are referred to as facets (i.e., input, output, navigation, and control).
In this sense, AICs are an abstraction of widgets found in graphical toolkits (like win-
dows, buttons) and in vocal toolkits (like vocal input and output widgets in the vocal
interface). Two AUI relationships that can be defined between AICs:

1. Dialog transition: specifies a navigation transition within a abstract container or
across several abstract containers.

2. Spatio-temporal relationship: characterizes the physical constraints between AICs
as they are presented in time and space.

As an AUI does not refer to any particular modality, we do not know yet how this
abstract description will be concretized: graphical, vocal or multimodal. This is
achieved in the next level.

The Concrete UI (CUI) concretizes an AUI for a given context of use into Con-
crete Interaction Objects (CIOs) so as to define layout and/or interface navigation of
2D graphical widgets and/or vocal widgets. Any CUI is composed of CIOs, which re-
alize an abstraction of widgets sets found in popular graphical and vocal toolkits (e.g.,
Java AWT/Swing, HTML 4.0, Flash DRK6, VoiceXML, and VoxML). A CIO is de-
fined as an entity that users can perceive and/or manipulate (e.g., push button, text
field, check box, vocal output, vocal input, vocal menu). The CUI abstracts a Final UI
in a way that is independent of any toolkit peculiarities.

The Final UI (FUI) is the operational U], i.e. any Ul running on a particular com-
puting platform either by interpretation (e.g., through a Web browser) or by execution
(e.g., after the compilation of code in an interactive development environment). The
Context of use describes all the entities that may influence how the user’s task is car-
rying out with the future UL It takes into account three relevant aspects, each aspect
having its own associated attributes contained in a separate model: user type (e.g.,
system experience, task experience, task motivation), computing platform type (e.g.,
mobile platform vs. stationary), and physical environment type (e.g., office condi-
tions, outdoor conditions). These attributes initiate transformations that are applicable
depending on the current context of use. In order to map different elements belonging

SketchiXML: A Design Tool for Informal User Interface Rapid Prototyping 165

to the models described above, UsiXML provides the designer with a set of pre-
defined mappings [14]:

e Manipulates: maps a task onto a domain concept.

e Updates: maps an interaction object and a domain model concept (specifically, an
attribute).

e Triggers: maps an interaction object and a domain model concept (specifically an
operation).

e [s Executed In: maps a task onto an AUI or CUI element.

e s Reified By: maps an abstract object into a concrete one through an abstraction
transformation.

3.2 The Concrete User Interface in UsiXML

The semantics of the UsiXML are defined in a UML class diagram (Fig. 2 is illustrat-
ing a portion of this metamodel). Each class, attribute or relation of this class diagram
is transformed into a XML Schema defining the concrete syntax of the UsiXML lan-
guage in general. All other levels of the reference framework depicted in Figure 1 are
equally expressed in UsiXML to support seamless transition between any levels of
abstraction to any other one. A CUI is assumed to be expressed without any reference
to any particular computing platform or toolkit of that platform. A CUI model con-
sists of a hierarchical decomposition of CIOs (any UI entity that users can perceive
such as text, image, animation and/or manipulate such as a push button, a list box, or
a check box) that are linked together with cuiRelationships between. A CIO is charac-
terized by [14]:

- id: an internally attributed identifier of a CIO;

- name: a name given to the CIO to reflect its function, purpose;
- icon: a reference to an icon attached to the CIO, if any;

- content: a reference to the textual contents of a CIO, if any;

- defaultContent: the default value of its textual contents, if any;
- defaultlcon: the default icon of this CIO, if any;

- defaultHelp: the default text for helping the user on this CIO;

- help: the extended help system for helping the user on this CIO;
- currentValue: the current value of the CIO at run-time, if any.

At the second level, each CIO is sub-typed into sub-CIOs depending on the interac-
tion modality chosen: graphicalCIO for GUISs, auditoryCIO for vocal interfaces, etc.
Each graphicalCIO inherits from the above properties of the CIO. Specific attributes
include, but are not limited to:

- isVisible: is set to true if a graphicalCio is visible;

- isEnabled: is set to true if a graphicalCIO is enabled;

- fgColor and bgColor: are the foreground and background colors;

- toolTipDefaultContent: for the default content of the tooltip;

- toolTipContent: the contents of the tooltip depending on the context of use, which
may vary from one user to another;

- transparencyRate: for supporting translucid interfaces;

166 A. Coyette, J. Vanderdonckt, and Q. Limbourg

Each graphicalCIO can then belong to one category: graphicalContainer for all
widgets containing other widgets such as window, frame, dialog box, table, box and
their related decomposition or graphicallndividualComponent for all other traditional
widgets that are typically found. UsiXML supports (Figure 2) textComponent, video-
Component, imageComponent, imageZone, radioButton, toggleButton, icon, check-
box, item, comboBox, button, tree, menu, menultem, drawingCanvas, colorPicker,
hourPicker, datePicker, filePicker, progressionBar, slider, and cursor.

Thanks to this progressive inheritance mechanism, every final elements of the CUI
inherits from the upper properties depending on the category they belong to. The
properties that have been chosen in UsiXML have been decided because they belong
to the intersection of property sets of major toolkits and window managers, such as
Windows GDI, Java AWT and Swing, HTML. Of course, only properties of high
common interest were kept. In this way, a CIO can be specified independently from
the fact that it will be further rendered in HTML, VRML or Java. This quality is often
referred to as the property of platform independence. Therefore, the CIOs defined at
the CUI level remain independent of any computing platform (and thus of any under-
lying toolkit) since the same CUI could be specified in principle for different comput-
ing platforms and devices.

In the next section, we will see how this Concrete User Interface can be sketched in
SketchiXML and stored internally in terms of UsiXML tags.

< Rational Rose - USIXMLy1.6.1.mdI - [Class Diagram: Logical View / 5. Cui Model]

File Edit View Format Browse Report Query Tools Add-Ins Window Help
— T T T
7 53

BLWTN[Ism D&

[00:00:49] [Customizable Menus]
~|o0:00:49) [c |
00:00:49] [C nus]

ST« ¥ N\ oa/
oo, pess 1

. Do Lvguage ot
“:start | ®Inbox-Mico... | Master Volume @ Molina-Web3... | @ http://wwwis... | % 3D Uls ['B Microsoft Pow... | B AdobeReader < Rational Rose ...

Fig. 2. The Concrete User Interface level defined in UsiXML as a UML Class Diagram [14]

SketchiXML: A Design Tool for Informal User Interface Rapid Prototyping 167

4 SketchiXML Development

The main requirements to address are the following: to support shape recognition, to
provide spatial shape interpretation, to provide usability advice at design time, to handle
several kinds of input, to generate UsiXML specifications at design-time, and to operate
in a flexible way. To address these requirements, a BDI (Belief-Desire-Intention) agent-
oriented architecture [7] was considered appropriate: such architecture allows building
robust and flexible applications by distributing the responsibilities among autonomous
and cooperating agents. Each agent is in charge of a specific part of the process, and co-
operates with the others in order to provide the service required according to the de-
signer’s preferences. This kind of approach has the advantage of being more flexible,
modular and robust than traditional architecture including object-oriented ones [7].

4.1 SketchiXML Architecture

The application was built using the SKwyRL-framework (its usage is summarized in
[7]), a framework aimed at defining, formalizing and applying socially based catalogues
of styles and patterns to construct agent and multi-agent architectures. The joint-venture
organizational style pattern was applied to design the agent-architecture of
SketchiXML. It was chosen on basis of non-functional requirements Ri, as among all
organizational styles defined in the SKwyRL framework, the joint venture clearly
matches the aforementioned requirements as the most open and distributed organiza-
tional style.

The architecture (Fig. 3) is structured using i* [7], a graph where each node repre-
sents an actor (or system component) and each link between two actors indicates that
one actor depends on the other for some goal to be attained. A dependency describes
an “agreement” (called dependum) between two actors: the depender and the de-
pendee. The depender is the depending actor, and the dependee, the actor who is de-
pended upon. The type of the dependency describes the nature of the agreement. Goal
dependencies represent delegation of responsibility for fulfilling a goal; softgoal de-
pendencies are similar to goal dependencies, but their fulfillment cannot be defined
precisely; task dependencies are used in situations where the dependee is required.

When a user wishes to create a new SketchiXML project, she contacts the Broker
agent, which serves as an intermediary between the external actor and the organiza-
tional system. The Broker queries the user for all the relevant information needed for
the process, such as the target platform, the input type, the intervention strategy of the
Adviser agent,... According to the criteria entered, the coordinator chooses the most
suitable handling and coordinates all the agents participating in the process in order to
meet the objectives determined by the user. For clearness, the following section only
considers a situation where the user has selected real time recognition, and pen-input
device as input. So, the Data Editor agent then displays a white board allowing the
user to draw his hand-sketch interface. All the strokes are collected and then transmit-
ted to the Shape Recognizer agent for recognition. The recognition engine of this
agent is based on the CALI library [4], a recognition engine able to identify shapes of
different sizes, rotated at arbitrary angles, drawn with dashed, continuous strokes or
overlapping lines.

168 A. Coyette, J. Vanderdonckt, and Q. Limbourg

Inference Irterpreter

¥
Shape /1 Wectorial ot
S Recognizer ¥ Shapes
Recognition
Patterns

Ambiguities

A
Data Editing : . Graphics T
Data Eclitor
o
Fules Selectio / Armbiguity

.

~
~
v

Solver

Widget
Lizambiguatio Ty
Algorthrs

o
1)

7

v

Un-Salved
WML Spec Arnbicuities

Mapping Layout
)
& s XML Parser H 4
Interface
Ecition GrEaéo'{'\Du;al

P

Fig. 3. i* representation of SketchiXML architecture as a Joint-Venture

Subsequently, the Shape Recognizer agent provides all the vectorial shapes identified
with relevant information such as location, dimension or degree of certainty associated to
the Interpreter agent. Based on these shape sets, the Inferpreter agent attempts to create a
component layout. The technique used for the creation of this layout takes advantage of
the knowledge capacity of agents. The agent stores all the shapes identified as his belief,
and each time a new shape is received all the potential candidates for association are ex-
tracted. Using its set of patterns the agent then evaluates if shape pairs form a widget or a
sub-widget. The conditions to be tested are based on a set of fuzzy spatial relations allow-
ing to deal with imprecise spatial combinations of geometric shapes and to fluctuate with
user preferences. Based on the widgets identified by the Interpreter, the Adviser agent as-
sists the designer with the conception of the Uls in two different ways.

Firstly, by providing real-time assistance to the designer by attempting to detect Ul
patterns in the current sketch in order to complete the sketch automatically. Secondly
in a post operational mode, the usability adviser provides usability advice on the inter-
face sketched. If the Interpreter fails to identify all the components or to apply all the
usability rules, then the Ambiguity Solver agent is invoked. This agent evaluates how
to solve the problem according to the initial parameters entered by the user.

The agent can either attempt to solve the ambiguity itself by using its set of disam-
biguation algorithms, or to delegate it to a third agent, the Graphical Editor agent. The
Graphical Editor displays all the widget recognized at this point, as classical element-
based software, and highlights all the components with a low degree of certainty for con-
firmation. Once one of these last three agents evoked has sufficient certainty about the
overall widget layout, the Ul is sent to the XML Parser agent for UsiXML generation.

4.2 Low-Fidelity Prototyping with SketchiXML

The first step in SketchiXML consists of specifying parameters that will drive the
low-fidelity prototyping process (Fig. 4): the project name, the input type (i.e. on-line

SketchiXML: A Design Tool for Informal User Interface Rapid Prototyping 169

sketching or off-line drawing that is scanned and processed in one step-Fig. 5), the
computing platform for which the Ul is prototyped (a predefined platform can be se-
lected such as mobile phone, PDA, TabletPC, kiosk, ScreenPhone, laptop, desktop,
wall screen, or a custom one can be defined in terms of platform model [10]), the out-
put folder, the time when the recognition process is initiated (ranging from
on-demand manual to fully automatic each time a new widget can be detected- this
flexibility is vital according to experiments), the intervention mode of the usability
advisor (manual, mixed-initiative, automatic), and the output quality stating the re-
sponse time vs. quality of results of the recognition and usability advisor processes. In
Fig. 7, the UsiXML parsing is set on fully manual mode, and the output quality is set
on medium quality. The quality level affects the way the agents consider a widget
layout to be acceptable, or the constraints used for the pattern matching between
vectorial shapes. The sketching phase in that situation is thus very similar to the
sketching process of an application such as FreeForms [17]. Of course, the designer is
always free to change these parameters while the process is running.

New Project Wizard RS e

- e S O S Faaedd ..
. T o) Thoes *mated.
prDJECt MName Interact 2005 f 7 P
T AR owre — |
Input Type: Sketching M T F i —————
- 7"—-— ’ L IR e oL
Target Platform: Pocket Po - rﬁf e X
&, REsEere e
Output Folder: GAUSIKML L R .-'.E S ey
; ki
manual automatic | ; |1-)
B e— .
Recognition: J | v % flh‘l
P
Usahility Advizer] : o El
UsiXmL Generation:] i ol Fl.
Lo High . o /:; /
Output Cuality { it
el A
Fig. 4. Creating a new SketchiXML prototype Fig. 5. Scanned UI sketching

=i

Fig. 6. SketchiXML workspace

170 A. Coyette, J. Vanderdonckt, and Q. Limbourg

Fig. 6 illustrates the SketchiXML workspace configured for designing a Ul for a
standard personal computer. On the left part we can observe that shape recognition is
disabled as none of the sketches is interpreted, and the widget layout generated by the
Interpreter agent remains empty. The right part represents the same Ul with shape
recognition and interpretation. Fig. 7 depicts SketchiXML parameterized for a Pock-
etPC platform and its results imported in GrafiXML, a UsiXML-compliant graphical
UI editor that can generate code for HTML, XHTML, and Java (http://www.usixml.
org/index.php?view=page&idpage=10).

When shape recognition is activated, each time a new widget is identified the color
of the shapes turns to green, and the widget tree generated by the Interpreter is up-
dated. Changing the context has a deep impact on the way the system operates. As an
example, when a user builds a user interface for one platform or another, adaptations
need to be based on the design knowledge that will be used for evaluation, by select-
ing and prioritizing rule sets, and on the set of available widgets. As the size of the
drawing area is changing, the set of constraints used for the interpretation needs to be
tailored too, indeed if the average size of the strokes drawn is much smaller than on a
standard display, the imprecision associated with each stroke follows the same trend.
We can thus strengthen the constraints to avoid any confusion.

SketchiXML - Interact 2005
Fie Edt Tools Window Help

= 11 undefined Box 12
=] Buiton 0
o Button 1

Fig. 7. SketchiXML workspace configured for a PDA and its import in GrafiXML

Once the design phase is complete, SketchiXML parses the informal design to pro-
duce UsiXML specifications. Fig. 8 gives an overview of the UsiXML specifications
generated from UI drawn in Fig. 7. Each widget is represented with standard values
for each attribute, as SketchiXML is only aimed at capturing the UI core properties.
In addition, the UsiXML specifications integrate all the information related to the
context of use as specified in the wizard depicted on Fig. 7: information for the user
model, the platform model, and the environment model [10]. As UsiXML allows de-
fining a set of transformation rules for switching from one of the UsiXML models to
another, or to adapt a model for another context, such information is thus required.
Fig. 7 illustrates the SketchiXML output imported in GrafiXML, a high fidelity UI
graphical editor. On basis of the informal design provided during the early design, a

SketchiXML: A Design Tool for Informal User Interface Rapid Prototyping 171

programmer can re-use the output without any loss of time to provide a revised ver-
sion of the UI with all the characteristics that can and should not be defined during the
early design phase. This contrasts with a traditional approach, where a programmer
had to implement user interfaces on basis of a set of blackboard photographs or sheets
of paper, and thus start the implementation process from the beginning.

<xml wersion="1.0" encoding="UTF-§"z2>
<uiModel id="Interact_ Z005" name="Interact 005"
creationDate="2005-01-06T14:51: 31.656+01: 00" schemaVersion="1.6.1"
xmlns="http: / /v, usixml . org">
<version modifDate="z2005-01-06T14:51:31.656+01: 007 xnlns="">1<{/version>
<authorlane xmlns="">3ketchiXML/authoriianes
<cuiModel id="Interact 2005_f-cui" name="Interact 2005-cui™s
<window id="window_0" name="window 0" isV¥Visible="true"
isEnabled="true" LgColor="#000000" bgColor="#eceddd"” borderWidth="0" width="400"
height="350"
isdlwaysOnTop="false" windowleftMargin="0" windowTopMargin="0" isResizable="trus">
<box id="box_0" name="hox_ 0" isVisible="false"
isEnabled="true"” width="400" height="350" type="horizontal™ isFlow="false"
isFill="false™
isScrollable="false" isSplitable="false™ isDetachahle="false™
isResizableVertical="falze"
isResizableHorizontal="false” relativeMinWidth="0" relativeMinHeight="0"
isBalanced="false"
relativeWidth="0" relativeHeight="0">...
<textComponent id="label 0" name="lahel 0"
is¥isible="trus" isEnabled="true" £gColor="#000000" bgColor="#ecceldg"”
visitedLinkColor="#000000"
activelinkColor="#000000" isBold="true" isItalic="false" isUnderline="false"
isStrikethrough="false" isSubscript="false™ isSuperscript="false™
isPreformatted="false™
textColor="#000000" textiize="1Z2Z" textFont="Dialog” textMargin="0"
textVerticaldlign="mniddle"
textHorizontalAlign="left"™ scrollStyle="scroll™ scrollDirection="left"/>...
<imageComponent id="image 0" name="image 0" isVisible="true" isEnabled="true"
defaul tHyperlinkTarget=""/4=...
<button id="button_l" name="button_l" isVisible="true" isEnabled="true"
fgColor=""#000000" bgColor="#eceld8"/>...
</box> </window>
</ouilodel>
<ocontextModel id="interact 2005-contextModel 07 name="interact Z005-contextModel pda™>
<context id="interact_2005-context 0" name="interact_z005-context pda™>
<useritereotype id="interact_2005-user UJ_0" language="en U™
stereotypeName="interact_ zZ005-uzer 13"
taskExperience="1" syatemExperience="1" deviceExperience="1" taskMotiwvation="1"/>
<platforn id="windows_wmobile_ =2003" name="windows_mobhile_ 2003">
<goftwarePlatforn 03Name="Windows™ 053Version="2003" O05Vendor="Microsoft Corp."/>
<hardwarePlatforn screeniize="240x3zZ0" />
</platforns< fcontext>< fcontextModels>
<resourceModel id="Interact Z005_6" name="Interact Z005"/>
</uillodel>

Fig. 8. Excerpt of the UsiXML specifications generated by SketchiXML

As the Usability Advisor intervention time has been specified as “automatic” (Fig. 4),
each time a usability deviation is detected with respect to usability guidelines, a tool tip
message is produced in context, attached to the widget on concern. For this purpose, a set
of form-based usability guidelines have been encoded in GDL (Guideline Definition
Language), a XML-compliant description of guidelines that can be directly related to
UsiXML widgets.

SketchiXML is able to capture any type of sketching, only some of them are recog-
nized as widgets and then turned into corresponding UsiXML specifications. If a Ul
sketch does incorporate other types of contents, such as illustrations, graphs, decorations,

172 A. Coyette, J. Vanderdonckt, and Q. Limbourg

Euros to 1 USD (jnvert,data)
EUR
0.804555 g
0.759992 @
0.773395 i
L
0.7EF799 5
0742202 =5
0. 726606 g
Dec 28 Jam 28 Mar 1 Mar 30 Apr 29
highest (May
latest (May 20) lowest (Dec 27)
120 days 20
0,796622 0,733945 AT
:Arnerican Dallar 3\4 [base currency
change target currency by clicking on list at right
graph @ 30days | 120days | monthly average

use American Dollar as target currency
view data used in this graph
see table for Amenican Dollar or Euro

Fig. 9. Example of a Ul containing native widgets and custom widgets

55 SketchiXML - My Project g@

Fle Edt Tools Window Help

Bo & & (| ®BEp o

1< My Project: Windows - 1 = !EW
Eﬂuwl

Latret Windaw L

iz~ ||| Hovizonkal Boe 0

- =] Vertical Box 1
=] Vertical Box 3
(=] Vertical Bax 8

A T A Labeld
-~ = vertical Box 7
Lol g i Picture 0
= ||| Horizontal Box 4
Aaan, - A Hyperlink 0

A :
- A Label 1
P PR I ol P i | A Labelz
oo A Label 3
r Lahel Labet toriret (=~ 1| Horizontsl Box &
Hypertinke——> =0 ComboBox 0
~-- | Button 0
(i Wertical Box 5
ComboBox §/ Button S A Label4
o A Label 5
- A Label &
Lo A Label 7
Fatret =] Vertical Bax 2

Latret

i

Eratret

& My Projec e[|

=
£ ul] [

Fig. 10. The UI sketching corresponding to the UI depicted in Fig. 9

manual sketches (e.g. as in Fig. 9), all of them will be incorporated and saved in the
corresponding files. Unrecognized elements will be simply stored as images along
with their contents. Custom widgets are defined similarly: their graphical representa-
tion is sketched and saved as an image. At any time, the designer may ask to show the
graphical representation of the UI with or without the part which has been recognized

SketchiXML: A Design Tool for Informal User Interface Rapid Prototyping 173

(Fig. 10). In this way, the designer is not distracted from native widgets which are
recognized and custom widgets which are not recognized (Fig. 10).

Finally, it is possible to request a Ul preview at any time by sending the corre-
sponding UsiXML file to GrafiXML, the high-fidelity editor (which can be freely
downloaded from http://www.usixml.org/index.php?view=page&idpage=10). Fig. 11
reproduces a simple UI sketched for a PocketPC (specified in the profile), which is
therefore restricted to the widgets that are only available on this platform (e.g., 2ME
edition). Fig. 12 shows the related rendering for this environment.

SketchiXML - My Project
File Edit Tools Window Help

B @O & & wey (i @ 9=

- Widets Tree |[_ IO

™ window 0
== vertical Box 0
5= Wertical Bax 1
it A Labelo
1| Horizontal Box 3
A Labelz
[EH ComboBox 0
Horizontal Box 4
A Label 3

[=H comboBox 1

I Horizontal Box 5

Lo Ay Label 4

- [a] TextField 0

I Horizortal Box &
A Labels

S = slider 0
Horizontal Box 7
A Labels

¥ CheckBox 0

[+ CheckBox 1
Hoizontal Box 2
o Button 0
L. om] Buttan 1

Fig. 11. A UI sketched for a Pocket PC

]

w1 Preview window_component_0 g

Search for a place to eat

ame |
Price —]

Paym ent means []aE [Wisafmc

Fig. 12. A Ul rendered for a Pocket PC

174 A. Coyette, J. Vanderdonckt, and Q. Limbourg

5 Conclusion

The main difference between SketchiXML considered here as a tool for sketching the
UI during the prototyping phase is that the effort done during this phase is not lost: it
is automatically transformed into specifications written in UsiXML in order to pass
them to other software which communicate by exchanging UsiXML files. It could be
in particular a high-fidelity UI editor such as GrafiXML (as illustrated in Fig. 7) or
any other UsiXML-compliant editor. Elements of the sketch which are not recognized
are simply saved as images which are then reproduced at any time. Therefore, the cur-
rent level of fidelity of the prototyped Uls may be increased by recuperating these
specifications into another editor and continuing to refine their specifications until a
final UI is reached. From this moment, any UsiXML-compliant rendering engine
(such as a code generator or interpreter) could render the UT at run-time, even if this is
during the prototyping phase [11,19].

It is obvious that at the beginning of the UI development life cycle, the Ul require-
ments are not yet well done, especially if the UI concerns a new domain of activity,
where little or no previous experience or history exists. For those cases where a substan-
tive experience already exists, this prototyping phase may be reduced to reopening pre-
viously existing UI specifications and tailoring them to the new project. In both cases,
the sketching tool is able to support designers, developers, or even end-users to refine
their ideas until a final UI is obtained with consensus between the stakeholders.

Acknowledgments

We gratefully thank the support from of the Request research project under the umbrella
of the WIST (Wallonie Information Société Technologies) program under convention
n°031/5592 RW REQUEST) and from the SIMILAR network of excellence (The Euro-
pean research taskforce creating human-machine interfaces SIMILAR to human-human
communication), supported by the 6" Framework Program of the European Commis-
sion, under contract FP6-IST1-2003-507609 (http://www.similar. cc). We warmly thank
J.A. Jorge, F.M.G. Pereira and A. Caetano for allowing us to use JavaSketchlt and the
CALI library in our research. Preliminary work on UsiXML has been achieved under
the umbrella of the Cameleon European project: the authors also want to warmly thank
the partners of this project for their fruitful discussion. UsiXML is now available as a
Consortium whose affiliation is free: to register as a member, go to
http://www.usixml.org/index.php?view=register&start=47. Finally, the authors want to
thank the RUIPIACS workshop organizers who allowed us to present this work.

References

1. Ali M.F., Pérez-Quifiones M.A., Abrams M.: Building Multi-Platform User Interfaces with
UIML. In: Seffah, A., Javahery, H. (eds.): Multiple User Interfaces: Engineering and Ap-
plication Framework. John Wiley, Chichester (2004) 95-118.

2. Barboni, E., Navarre, D., Palanque, Ph., Basnyat, S.: Model-Based Engineering of Wid-
gets, User Applications and Servers Compliant with ARINC 661 Specification. In: Pro-
ceedings of the 13™ Conference on Design, Specification, and Verification of Interactive
Systems DSV-IS’2006 (Dublin, July 26-28, 2006). Lecture Notes in Computer Science,
Springer Verlag, Berlin (2000).

10.

11.

12.

13.

14.

15.

16.

17.

SketchiXML: A Design Tool for Informal User Interface Rapid Prototyping 175

Bastide, R., Navarre, D., Palanque, P.A.: A Tool-supported Design Framework for Safety
Critical Interactive Systems. Interacting with Computers 15,3 (2003) 309-328.

Caetano, A., Goulart, N., Fonseca, M., Jorge, J.: JavaSketchlt: Issues in Sketching the
Look of User Interfaces. In: Proc. of the 2002 AAAI Spring Symposium - Sketch Under-
standing (Palo Alto, March 2002). AAAI Press, Menlo Park (2002) 9-14.

Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., Vanderdonckt, J.: A
Unifying Reference Framework for Multi-Target User Interfaces. Interacting with Com-
puter 15,3 (2003) 289-308.

Carr, D.A., Specification of Interface Interaction Objects. In: Proc. of ACM Conf. on Hu-
man Aspects in Computing Systems CHI’94 (Boston, April 24-28, 1994). Vol. 2, ACM
Press, New York (1994) p. 226.

Coyette, A., Vanderdonckt, J.: A Sketching Tool for Designing Anyuser, Anyplatform, Any-
where User Interfaces. In: Proc. of 10" IFIP TC 13 Int. Conf. on Human-Computer Inter-
action INTERACT’2005 (Rome, 12-16 September 2005), Lecture Notes in Computer Sci-
ence, Vol. 3585, Springer-Verlag, Berlin, 2005, 550-564.

Duke, D.J., Harrison, M.D.: Abstract Interaction Objects. Computer Graphics Forum 12,3
(1993) 25-36.

Eisenstein, J., Vanderdonckt, J., Puerta, A.: Model-Based User-Interface Development
Techniques for Mobile Computing. In: Lester J. (ed.): Proc. of 5" ACM Int. Conf. on Intel-
ligent User Interfaces IUI’2001 (Santa Fe, January 14-17, 2001). ACM Press, New York
(2001) 69-76.

Florins, M., Vanderdonckt, J.: Graceful Degradation of User Interfaces as a Design
Method for Multiplatform Systems. In: Proc. of Int. Conf. on Intelligent User Interfaces
IUT’04 (Funchal, January 13-16, 2004). ACM Press, New York (2004) 140-147.

Grolaux, D., Vanderdonckt, J., Van Roy, P.: Attach me, Detach me, Assemble me like You
Work. In: Proc. of 10™ IFIP TC 13 Int. Conf. on Human-Computer Interaction INTER-
ACT’2005 (Rome, September 12-16, 2005), Lecture Notes in Computer Science, Vol.
3585, Springer-Verlag, Berlin (2005) 198-212.

Landay, J., Myers, B.A.: Sketching Interfaces: Toward More Human Interface Design.
IEEE Computer 34, 3 (March 2001) 56-64.

Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L., Lopez, V.: USIXML: a Lan-
guage Supporting Multi-Path Development of User Interfaces. In: Proc. of 9" IFIP Work-
ing Conf. on Engineering for Human-Computer Interaction jointly with 11" Int. Workshop
on Design, Specification, and Verification of Interactive Systems EHCI-DSVIS’2004
(Hamburg, July 11-13, 2004). Lecture Notes in Computer Science, Vol. 3425. Springer-
Verlag, Berlin (2005) 200-220.

Limbourg, Q., Multi-path Development of User Interfaces, Ph.D. thesis, Université catho-
lique de Louvain, Louvain-la-Neuve, November 2004.

Newman, M.W., Lin, J., Hong, J.I., Landay, J.A.: DENIM: An Informal Web Site Design
Tool Inspired by Observations of Practice. Human-Computer Interaction 18 (2003)
259-324.

Plimmer, B.E., Apperley, M.: Software for Students to Sketch Interface Designs. In: Proc.
of 9" IFIP TC 13 Int. Conf. on Human-Computer Interaction INTERACT’2003 (Zurich,
1-5 September 2003). IOS Press, Amsterdam (2003) 73-80.

Plimmer, B.E., Apperley, M.: Interacting with Sketched Interface Designs: An Evaluation
Study. In: Proc. of ACM Conf. on Human Aspects in Computing Systems CHI’04
(Vienna, April 24-29, 2004). ACM Press, New York (2004) 1337-1340.

176 A. Coyette, J. Vanderdonckt, and Q. Limbourg

18. Vanderdonckt, J., Bodart, F.: Encapsulating Knowledge for Intelligent Automatic Interac-
tion Objects Selection. In: Proc. of the ACM Conf. on Human Factors in Computing Sys-
tems INTERCHI'93 (Amsterdam, April 24-29, 1993). ACM Press, New York (1993)
424-429.

19. Vanderdonckt, J.: A MDA-Compliant Environment for Developing User Interfaces of In-
formation Systems. In: Pastor, O. & Falcdo e Cunha, J. (eds.), Proc. of 17™ Conf. on Ad-
vanced Information Systems Engineering CAiSE'05 (Porto, 13-17 June 2005). Lecture
Notes in Computer Science, Vol. 3520. Springer-Verlag, Berlin (2005) 16-31.

20. van Duyne, D.K., Landay, J.A., Hong, J.I..: The Design of Sites: Patterns, Principles, and
Processes for Crafting a Customer-Centered Web Experience. Addison-Wesley, Reading
(2002).

Aiello, Giovanni 35
Alessi, Marco 35

Amaral, Vasco 144
Anzures-Garcia, Mario 66

Bégin, Marc-Elian 81
Bertolino, Antonia 98, 114

Caporuscio, Mauro 18
Cossentino, Massimo 35
Coyette, Adrien 160

Di Meglio, Alberto 81

Felici, Massimo 51
Ferro, Enrico 81

Gao, Jinghua 114
Hornos, Miguel J. 66

Issarny, Valerie 18

Limbourg, Quentin 160

Author Index

Marchetti, Eda 114
Muccini, Henry 98

Paderewski-Rodriguez, Patricia
Polini, Andrea 98, 114

Risoldi, Matteo 144
Ronchieri, Elisabetta 81

Sancho, Guillermo Diez-Andino
Schmidt, Markus 130
Selmi, Matteo 81

Tan, Koon Leai Larry 1
Turner, Kenneth J. 1

Urso, Alfonso 35

Vanderdonckt, Jean 160
Vella, Giuseppe 35

Zurek, Marian 81

66

81

	Title
	Preface
	Organization
	Table of Contents
	Graphical Composition of Grid Services
	Introduction
	Motivation
	Background to Grid Computing
	Background to Service Orchestration
	Background to CRESS
	Relationship to OtherWork

	Describing Composite Grid Services with CRESS
	CRESS Notation for Grid Services
	Content Analysis Using Grid Services
	CRESS Description of the Scorer Service
	CRESS Description of the Matcher Service
	The CRESS Service Configuration
	Translation of the CRESS Diagrams

	Translating Grid Services to LOTOS
	Translating Web Services to BPEL
	Service Creation
	Service Deployment
	Service Flow
	Supporting Orchestration
	Compatibility of ActiveBPEL and GT4

	References
	Conclusions

	A UML 2.0 Profile for Architecting B3G Applications
	Introduction
	B3G Network Properties Elicitation
	Networks in B3G
	QoS--Related Properties of Interest
	Network Services

	An UML Profile for B3G Software Architectures
	Background: The Dually Profile for Software Architectures
	Extending SA-Channels for B3G
	Early Example

	B3G Software Architecture Analysis
	Conclusions and Future Work

	RTDWD: Real-Time Distributed Wideband-Delphi for User Stories Estimation
	Introduction
	Related Works
	The Estimation Phase in Agile Software Development
	The Wideband-Delphi Method for User Stories Estimation

	CONDIVISA: The Deployment Environment of RTDWD
	RTDWD: A Tool for Distributed Wideband-Delphi Virtual Meetings
	Tool Validation
	Conclusions and Future Work

	Trust Strategies and Policies in Complex Socio-technical Safety-Critical Domains: An Analysis of the Air Traffic Management Domain
	Introduction
	On Trust
	Safety, Risk and Trust in ATM
	Trust Strategies and Policies
	Trust, Risk and Knowledge: A Game
	Trust Strategies
	Trust Policies
	A Matter of Knowledge

	Conclusions

	Development of Extensible and Flexible Collaborative Applications Using a Web Service-Based Architecture
	Introduction
	Related Work
	Models and Environments for Developing Collaborative Applications
	Web Service-Based Collaborative Applications

	Architecture
	Group Layer
	Application Layer
	Communication Mechanisms

	Development of Collaborative Applications
	Conclusions and Future Work
	References

	Build, Configuration, Integration and Testing Tools for Large Software Projects: ETICS
	Introduction
	Requirements for the Design of the BCIT Framework
	Related Work
	Quality Assurance Certification Process
	ETICS System Architecture
	Security in ETICS

	A Rigorous Definition of the Basic Concepts
	Software Structure Definitions
	Build Configuration Definitions
	Security Information Definitions

	Supported Operations
	Use Cases
	Conclusion

	Architectural Verification of Black-Box Component-Based Systems
	Introduction
	Related Work
	Approach Overview
	Monitoring Black-Box CB Systems
	Model-Checking CBS Conformance to CBSA
	Applying the Approach to the Charmy Plugin System
	The Charmy Plugin Architecture and Its Specification
	Validating the Charmy Implementation with Respect to Its Architectural Specification
	Considerations and Evaluation of Results

	Conclusions and Future Work

	Systematic Generation of XML Instances to Test Complex Software Applications
	Introduction
	Related Work
	Category Partition
	The TAXI Tool
	Considerations on Applicability of the Approach
	Number of Conforming Instances
	XPT vs. Random Generation

	Automatic Instances Generation
	XML Schema Analyzer
	Test Strategy Selection

	Conclusions

	Transformations of UML 2 Models Using Concrete Syntax Patterns
	Introduction
	Related Work
	UML 2.0 Profiles
	Using Profiles to Specify Transformations
	Singleton
	Patterns with Parameters

	Realization of Our Approach
	Development Process
	Profile to Specify Transformations

	Classification as a Model Transformation Approach
	Conclusions and Outlook

	Towards a Formal, Model-Based Framework for Control Systems Interaction Prototyping
	Introduction
	The General Approach
	Definition of a Control System
	The Methodology

	Gathering Requirements
	Formalizing Requirements

	Modeling
	Transforming Requirements to a Model Using Meta-modeling
	A Structured Model
	The System Model
	The GUI Logical Model
	The GUI Visual Model

	Generating a GUI Prototype
	Communication

	Case Studies
	Conclusions and Future Work

	SketchiXML: A Design Tool for Informal User Interface Rapid Prototyping
	Introduction
	Related Work
	The Concrete User Interface in UsiXML
	A Reference Framework for User Interfaces in Multiple Contexts
	The Concrete User Interface in UsiXML

	SketchiXML Development
	SketchiXML Architecture
	Low-Fidelity Prototyping with SketchiXML

	Conclusion
	References

	Author Index

